scholarly journals Multi-Electrode Architecture Modeling and Optimization for Homogeneous Electroporation of Large Volumes of Tissue

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1892
Author(s):  
Borja López-Alonso ◽  
Héctor Sarnago ◽  
José M. Burdío ◽  
Pablo Briz ◽  
Oscar Lucía

Electroporation is a phenomenon that consists of increasing the permeability of the cell membrane by means of high-intensity electric field application. Nowadays, its clinical application to cancer treatment is one of the most relevant branches within the many areas of electroporation. In this area, it is essential to apply homogeneous treatments to achieve complete removal of tumors and avoid relapse. It is necessary to apply an optimized transmembrane potential at each point of the tissue by means of a homogenous electric field application and appropriated electric field orientation. Nevertheless, biological tissues are composed of wide variety, heterogeneous and anisotropic structures and, consequently, predicting the applied electric field distribution is complex. Consequently, by applying the parallel-needle electrodes and single-output generators, homogeneous and predictable treatments are difficult to obtain, often requiring several repositioning/application processes that may leave untreated areas. This paper proposes the use of multi-electrode structure to apply a wide range of electric field vectors to enhance the homogeneity of the treatment. To achieve this aim, a new multi-electrode parallel-plate configuration is proposed to improve the treatment in combination with a multiple-output generator. One method for optimizing the electric field pattern application is studied, and simulation and experimental results are presented and discussed, proving the feasibility of the proposed approach.

2015 ◽  
pp. 758-760
Author(s):  
Romain Delecourt ◽  
Loïc Marsal

Maguin (France) is still active in the application of pulsed electric field (PEF) technology. After having carried out successful tests on a 10 t/h pilot screw-type machine on sugar beet cossettes, a new application system based on a roller technology has been developed. This technology allows a wide range of application due to its flexibility with flowrates and materials. A variety of process schemes are proposed to ensure the best performance of the PEF technology.


Pressure has been used as the principal parameter in calculations of the fundamental vibrational frequencies of spherical drops of radius R , density ρ, and surface tension T carrying a charge Q or uncharged spheroidal drops of axial ratio a / b situated in a uniform electric field of strength E . Freely vibrating charged drops have a frequency f = f 0 ( 1 - Q 2 /16π R 3 T ) ½ , as shown previously by Rayleigh (1882) using energy considerations; f 0 is the vibrational frequency of non-electrified drops (Rayleigh 1879). The fundamental frequency of an uncharged drop in an electric field will decrease with increasing field strength and deformation a / b and will equal zero when E ( R )/ T ) ½ = 1.625 and a / b = 1.86; these critical values correspond to the disintegration conditions derived by Taylor (1964). An interferometric technique involving a laser confirmed the accuracy of the calculations concerned with charged drops. The vibration of water drops of radius around 2 mm was studied over a wide range of temperatures as they fell through electric fields either by suspending them in a vertical wind tunnel or allowing them to fall between a pair of vertical electrodes. Photographic analysis of the vibrations revealed good agreement between theory and experiment over the entire range of conditions studied even though the larger drops were not accurately spheroidal and the amplitude of the vibrations was large.


2001 ◽  
Vol 700 ◽  
Author(s):  
Malinda M. Tupper ◽  
Marjorie E. Chopinaud ◽  
Takamichi Ogawa ◽  
Michael J. Cima

AbstractDispensing micron-scale dielectric materials can be achieved through the use of dielectrophoresis. Electrodes are designed to create a nonuniform electric field. This method is expected to be applicable for transfer of a wide range of dielectric powders as well as small, shaped components. Small, 150 μm diameter silica spheres, as well as sodium fluorescein powder have been dispensed by this method. Selecting the appropriate electrode geometry and electric field intensity controls the amount collected. As little as 1.0 μg of sodium fluorescein powder, and as much as 16 mg of silica beads have been collected, and repeatability within 10 % of the total amount dispensed has been achieved.


2009 ◽  
Vol 1190 ◽  
Author(s):  
Takuma Kobayashi ◽  
Takeshi Kuribayashi ◽  
Masaki Omiya

AbstractWe built up the way of fabricating IPMC actuator with palladium electrodes and we found that it showed large bending response than Au-plated IPMC actuator. An ionic polymer-metal composite (IPMC) consisting of a thin perfuorinated ionomer membrane, electrodes plated on both faces, undergoes large bending motion when a small electric field is applied across its thickness in a hydrated state. The characteristics of IPMC are ease of miniaturization, low density, and mechanical flexibility. Therefore, it is considered to have a wide range of applications from MEMS sensor to artificial muscle. However, there are problems on IPMC. First, its mechanical and electric characteristics have not been clarified because of the complex mechanism of the deformation. Second, it is high-priced because most of IPMC actuators use gold or platinum as electrodes. In order for IPMC actuator to be widely put to practical use, we should solve these problems. Hence, this research focuses on fabrication of IPMC actuator with palladium electrode, which is cheaper than gold or platinum, and evaluation of its mechanical properties such as its tip displacement. We fabricated IPMC consisting of a thin Nafion® membrane, which is the film with fluorocarbon back-bones and mobile cations, sandwiched between two thin palladium plates. The surface resistivity was 2.88±0.18Ω/sq., so it could be said to be enough small. Then, we observed its cross section by using FE-SEM. As a result, palladium plates were evenly coated and its thickness was about 30μm. Also, we carried out an actuation test for two kinds of IPMCs: one was fabricated by using Nafion®117 (thickness 183μm), the other was by Nafion®115 (thickness 127μm). In this test, the relationship between voltage (0˜4V) across its thickness and tip displacement for the cantilevered strip of the IPMC was measured. Then we found that IPMCs showed large bending motion under a low electric field. When Nafion®117 sample was subjected to voltage of 1.5V, the ratio of the tip displacement to the sample length was 0.35, which was lager bending than Au-plated IPMC actuator, whose ratio of the tip displacement to the sample length was 0.12 [1]. When Nafion®115 sample was applied to 1.5V, the ratio of the tip displacement to the sample length was 0.22. Then, we found that Nafion®117 bended in a larger way than Nafion®115. Reference [1]Sia Nemat-Nesser and Yongxian Wu,”Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms”, Journal of Applied Physics,93,5255 (2003)


2021 ◽  
pp. 116845
Author(s):  
Yan Cao ◽  
Afrasyab Khan ◽  
Elham Tazikeh-Lemeski ◽  
Masoud Javan ◽  
Mohammad T. Baei ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The Gas-Liquid Cylindrical Cyclone (GLCC©*) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. More than 6,500 GLCC©'s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [1]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This paper presents a numerical study utilizing specific GLCC© field application working under 3 different case studies representing the flow entering the GLCC, separating light oil, steam flooded wells in Minas, Indonesia. Commercially available Computational Fluid Dynamics (CFD) software is utilized to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat8880 ◽  
Author(s):  
Itamar Rosenberg ◽  
Dror Liran ◽  
Yotam Mazuz-Harpaz ◽  
Kenneth West ◽  
Loren Pfeiffer ◽  
...  

Exciton-polaritons are mutually interacting quantum hybridizations of confined photons and electronic excitations. Here, we demonstrate a system of optically guided, electrically polarized exciton-polaritons (“dipolaritons”) that displays up to 200-fold enhancement of the polariton-polariton interaction strength compared to unpolarized polaritons. The magnitude of the dipolar interaction enhancement can be turned on and off and can be easily tuned over a very wide range by varying the applied polarizing electric field. The large interaction strengths and the very long propagation distances of these fully guided dipolaritons open up new opportunities for realizing complex quantum circuitry and quantum simulators, as well as topological states based on exciton-polaritons, for which the interactions between polaritons need to be large and spatially or temporally controlled. The results also raise fundamental questions on the origin of these large enhancements.


Sign in / Sign up

Export Citation Format

Share Document