scholarly journals Static Reactive Power Compensator Design, Based on Three-Phase Voltage Converter

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2198
Author(s):  
Manuel Ayala-Chauvin ◽  
Bahodurjon S. Kavrakov ◽  
Jorge Buele ◽  
José Varela-Aldás

At present, electrical network stability is of the utmost importance because of the increase in electric demand and the integration of distributed generation deriving from renewable energy. In this paper, we proposed a static reactive power compensator model with common direct current voltage sources. Converter parameters were calculated and designed to fulfill specifications. In order to ascertain the device response for different operating modes as reactive power consumer and generator, we developed the model’s power and control circuits in Matlab Simulink. Simulations were performed for different conditions, and as a result, the current and voltage waveforms and the circular power chart were obtained. This paper has theoretically proven it is possible to achieve the consumption or generation of purely active or reactive power by implementing a static reactive power compensator with common DC voltage sources.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1327 ◽  
Author(s):  
Thiago Soares ◽  
Ubiratan Bezerra ◽  
Maria Tostes

This paper proposes the development of a three-phase state estimation algorithm, which ensures complete observability for the electric network and a low investment cost for application in typical electric power distribution systems, which usually exhibit low levels of supervision facilities and measurement redundancy. Using the customers´ energy bills to calculate average demands, a three-phase load flow algorithm is run to generate pseudo-measurements of voltage magnitudes, active and reactive power injections, as well as current injections which are used to ensure the electrical network is full-observable, even with measurements available at only one point, the substation-feeder coupling point. The estimation process begins with a load flow solution for the customers´ average demand and uses an adjustment mechanism to track the real-time operating state to calculate the pseudo-measurements successively. Besides estimating the real-time operation state the proposed methodology also generates nontechnical losses estimation for each operation state. The effectiveness of the state estimation procedure is demonstrated by simulation results obtained for the IEEE 13-bus test network and for a real urban feeder.


Author(s):  
Weifang Zhai ◽  
Yongli Liu ◽  
Yiran Jiang

In order to ensure the safe operation of the distribution network and to understand the operation of the distribution network, it is necessary to monitor the various operating parameters of the distribution network in real time and to send the various measurement parameters to the dispatching and monitoring center in time. So the low-voltage distribution network integrated parameter measurement and control has been widely used. This paper introduces a design method of combining two sets of reactive power compensator and distribution network measuring and controlling device into one part. The distribution network measurement and control, power factor correction and reactive power compensation are realized. In a word, the system has simple structure, high precision, and strong anti-interference ability, among other advantages, with great market potential.


2015 ◽  
Vol 734 ◽  
pp. 868-872
Author(s):  
Yan Ping Sun ◽  
Mo Zhou ◽  
Guo Wang

A novel topology circuit of active compensation was discussed to be used to manage negative sequence caused by locomotive load in electrified railway. The main circuit used a three-phase two-leg compensator as active elements of shunt hybrid active compensator topology. The number of switch device in this topology was reduced by comparing with three-phase full-bridge active inverter and the cost was lower. The simulation model was developed with SIMULINK. The simulating results indicates that the shunt hybrid active compensator can restrain the problem of negative sequence which generated by locomotive load, and reduces the effect of reactive power, negative sequence, improves electric energy quality and verifies the correctness of the proposed structure and control method.


2021 ◽  
Vol 23 (1) ◽  
pp. 1-7
Author(s):  
Dekali Zouheyr ◽  
Baghli Lotfi ◽  
Lubin Thierry ◽  
Boumediene Abdelmadjid

This paper describes the real time implementation and control of a wind energy conversion chain emulator based on a synchronous generator (SG) using a full-scale power converter configuration. The proposed structure consists of the mechanical coupling of two 1.5 kW machines, a DC motor which emulates the static-dynamic behaviors of a three-blade wind turbine with a horizontal axis including an ideal gearbox, and a synchronous generator that ensures the electromechanical conversion and manages the different operating modes. The aim of the first part in this work is the design and the implementation of the control of the grid side converter in order to control the flow of the produced/consumed active and reactive power (PGSC / QGSC) in both directions between the generator and the grid. An improved experimental grid voltage vector-orientation control algorithm (VOC) is investigated and applied to the grid inverter to control the GSC powers independently and instantly. The control algorithms are implanted in C, using dSPACE DS1104 control board to drive the 6-IGBT’s inverter. The experimental results validate the effectiveness of the proposed control scheme of the GSC.


Author(s):  
Abdelkader Rahmouni

The work presented in this article is a contribution to the problem of controlling reactive powers and voltages in an electrical network. Among these control tools, the static reactive power compensator (SVC) was chosen because of its simplicity of control. SVC is one of the Alternative Flexible Current Transmission Systems (FACTS) devices which help to solve the problems encountered in the operation of electrical networks, either on the distribution side or on the transport side. To increase its compensation efficiency in the face of harmonic currents which cause voltage distortion, we have introduced a three-phase harmonic filter. This new hybrid SVC is used to control the reactive power, the voltage and in addition to reduce the voltage distortion and the correction of the power factor in the electrical energy transport network. In order to improve its efficiency, two voltage regulation systems have been chosen in the control system for this compensator, the fuzzy PI regulator and the PIP regulator.


Sign in / Sign up

Export Citation Format

Share Document