scholarly journals Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2202
Author(s):  
Cong Geng ◽  
Dawen Ning ◽  
Linfu Guo ◽  
Qicheng Xue ◽  
Shujian Mei

This paper proposes a double layered multi parameters braking energy recovery control strategy for Hybrid Electric Vehicle, which can combine the mechanical brake system with the motor brake system in the braking process to achieve higher energy utilization efficiency and at the same time ensure that the vehicle has sufficient braking performance and safety performance. The first layer of the control strategy proposed in this paper aims to improve the braking force distribution coefficient of the front axle. On the basis of following the principle of braking force distribution, the braking force of the front axle and the rear axle is reasonably distributed according to the braking strength. The second layer is to obtain the proportional coefficient of regenerative braking, considering the influence of vehicle speed, braking strength, and power battery state of charge (SOC) on the front axle mechanical braking force and motor braking force distribution, and a three-input single-output fuzzy controller is designed to realize the coordinated control of mechanical braking force and motor braking force of the front axle. Finally, the AMESim and Matlab/Simulink co-simulation model was built; the braking energy recovery control strategy proposed in this paper was simulated and analyzed based on standard cycle conditions (the NEDC and WLTC), and the simulation results were compared with regenerative braking control strategies A and B. The research results show that the braking energy recovery rate of the proposed control strategy is respectively 2.42%, 18.08% and 2.56%, 16.91% higher than that of the control strategies A and B, which significantly improves the energy recovery efficiency of the vehicle.

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987776 ◽  
Author(s):  
Shengqin Li ◽  
Bo Yu ◽  
Xinyuan Feng

Electric vehicles can convert the kinetic energy of the vehicle into electric energy for recycling. A reasonable braking force distribution strategy is the key to ensure braking stability and the energy recovery rate. For an electric vehicle, based on the ECE regulation curve and ideal braking force distribution (I curve), the braking force distribution strategy of the front and rear axles is designed to study the braking energy recovery control strategy. The fuzzy control method is adopted while the charging power limit of the battery is considered to correct the regenerative braking torque of the motor, the ratio of the regenerative braking force of the motor to the front axle braking force is designed according to different braking strengths, then the braking force distribution and braking energy recovery control strategies for regenerative braking and friction braking are developed. The simulation model of combined vehicle and energy recovery control strategy is established by Simulink and Cruise software. The braking energy recovery control strategy of this article is verified under different braking conditions and New European Driving Cycle conditions. The results show that the control strategy proposed in this article meets the requirements of braking stability. Under the condition of initial state of charge of 75%, the variation of state of charge of braking control strategy in this article is reduced by 8.22%, and the state of charge of braking strategy based on I curve reduces by 9.12%. The braking force distribution curves of the front and rear axle are in line with the braking characteristics, can effectively recover the braking energy, and improve the battery state of charge. Taking the using range of 95%–5% of battery state of charge as calculation target, the cruising range of vehicle with braking control strategy of this article increases to 136.64 km, which showed that the braking control strategy in this article could increase the cruising range of the electric vehicle.


2012 ◽  
Vol 490-495 ◽  
pp. 1783-1787
Author(s):  
Guan Feng Li ◽  
Hong Xia Wang

In order to improve the recovery of braking energy in electric vehicles, a braking force distribution control strategy is proposed which the braking force proportion of the front and rear wheels are distributed according to the brake strength, by analyzing the vehicle braking mechanics and related braking regulation, and combining with the motor output characteristics. A simulation is carried out with SIMULINK/ADVISOR, the results show that, comparing with ADVISOR braking force distribution control strategy, the control strategy not only meets braking stability well,but also there are obvious advantages in energy consumption per 100 kilometers,the rate of braking energy recovery and utilization.


2012 ◽  
Vol 588-589 ◽  
pp. 1484-1489
Author(s):  
Tian Li Wang ◽  
Chang Hong Chen ◽  
Qing Jie Zhao ◽  
Ying Xiao Yu

Based on the analysis about the front and rear braking force distribution curve and the motor anti-drag braking characteristic, the Regenerative Braking Control Strategy which can maintain the capacity of the motor braking energy recovery and make the front and rear braking force distribution closer to the ideal distribution state is proposed. Create a control model. It is simulated by AVL-cruise. The results show that the new control strategies can improve the utilization of ground adhesion coefficient and braking stability.


2013 ◽  
Vol 724-725 ◽  
pp. 1436-1439
Author(s):  
Hong Yu Zheng ◽  
Rong He ◽  
Chang Fu Zong

In accordance with ECE-R-13 braking regulations limit line, a regenerative braking control strategy is proposed to improve the braking energy recovery. Based on a Electric Vehicle, the braking distribution method makes the front and rear axle braking force arbitrarily distributed which is more effective to improve the rate of energy recovery. Simulation results show that this braking force distribution method focuses on making the braking force distribute to the drive shaft to a maximum extent and can decrease the vehicle fuel consumption.


2013 ◽  
Vol 273 ◽  
pp. 669-672
Author(s):  
Zhi Qiang Zhai ◽  
Xin Na Zhang

To improve the efficiency of braking energy recovery,a control strategy for braking force distribution was designed.The front and rear wheels braking force were distributed according to the braking intensity,motor characteristics and relevant regulations.A simulation model was created and analyzed for this control strategy on the basis of software simulationX.The result shows that nearly 26% of total energy consumption are recovered effectively under the UDDS cycle on the premise of security and stability.


2014 ◽  
Vol 898 ◽  
pp. 873-877 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Yan Bo Wang ◽  
Wen Hui Li

Based on the traditional hydraulic unit of ESC, Jilin University developed a braking energy recovery system of uniaxial decoupled. A first-order hysteresis filtering method with filtering time factor adaptively corrected was used to calculate driver's braking demand based on pressure of the master cylinder. A series of fixed partition coefficient control strategy was developed, coordinated control of electrical regenerative braking and hydraulic braking was carried out. Vehicle test was carried out. Vehicle test results show that the brake pedal travel simulator and the braking control strategies can improve the energy recovery, and ensure that the brake pedal feel is consistent with the traditional vehicle.


2014 ◽  
Vol 701-702 ◽  
pp. 733-738
Author(s):  
Chen Lu Kong ◽  
Mao Song Wan ◽  
Ning Chen ◽  
Li Ya Lv ◽  
Bing Lin Li

This paper mainly discusses the dynamic distribution of regenerative braking system and conventional friction braking system of EV.In order to meet the requirements of vehicle braking stability and recycle the braking energy whenever possible, the paper proposes a control strategy which based on ECE regulation and I curve.Then the proposed control strategy is embedded into the simulation software ADVISOR.The result shows that the control strategy of regenerative braking the paper presented is better than ADVISOR’s own on braking energy recovery, and is especially suitable for frequent braking city conditions.


2011 ◽  
Vol 219-220 ◽  
pp. 1161-1164
Author(s):  
Jing Ming Zhang ◽  
Wei Nan Du ◽  
Xiu Hu Wang

In order to improve hybrid electric vehicle’s energy efficiency, this paper did a research on the regenerative braking system of HEV. In this paper we proposed a new parallel regenerative braking control strategy for HEV and analyzed its characteristics in details. Based on theoretical analysis, we developed a parallel regenerative braking controller for a certain HEV, and built hardware-in-the-loop simulation system to test the controller’s performance. We chose the UDDS driving condition for simulation, and the result shows that the regenerative braking controller we developed is effective and reliable. The controller fulfills the parallel regenerative braking control strategy and distributes the braking force accurately. The energy recovery efficiency reaches 16.7%, which significantly improves the vehicle’s energy efficiency.


2014 ◽  
Vol 602-605 ◽  
pp. 1122-1126
Author(s):  
Ji Gao Niu ◽  
Chun Hua Xu

In order to further improve the baking energy recovery rate of extended-range electric vehicle (E-REV), thus to extend driving distance, a high efficiency regenerative braking control strategy for E-REV was proposed. Based on the co-simulation platform with AVL-Cruise and Simulink, a dynamic model for E-REV was set up and simulation calculations on hybrid motor-mechanical regenerative braking were performed. The simulation results with typical driving cycles illustrate that the friction braking force and the regenerative braking force could be well integrated, braking energy recovery efficiency was high, and the proposed control strategy of regenerative braking in the paper is effective.


Sign in / Sign up

Export Citation Format

Share Document