scholarly journals Study on Worldwide Embodied Impacts of Construction: Analysis of WIOD Release 2016

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3172
Author(s):  
Yu Mishina ◽  
Yosuke Sasaki ◽  
Keizo Yokoyama

Net-zero-energy buildings (ZEBs) that contribute to making annual energy consumption balances zero are effective measures for reducing greenhouse gas (GHG) emissions in the construction sector. As the application of ZEBs progresses, GHG emissions during the construction of buildings and the manufacturing of materials and products (called construction EG) account for a relatively large proportion of overall emissions. This study aimed to clarify construction EG as a means by which to formulate policies for the reduction of emissions in each country. The construction EGs of 43 countries from 2011 were analyzed. The 56-sector input/output table and CO2 emission data of the 2016 World Input/Output Database, published by the EU, were both used in this analysis. It was found that the construction sector accounted for the highest proportion of total CO2 emissions. Moreover, the fraction of construction EG tended to be higher in developing countries such as China and India, while developed countries tended to contribute a lower fraction of construction EG. Construction EGs were shown to be heavily influenced by the sectors that manufacture “cement”, “steel bars and steel frames”, and “energy sources”. Thus, it is very important to advance technological developments to reduce CO2 emissions within these sectors. The annual variation of construction EGs and CO2 emissions from 2000 to 2014 showed that the construction EGs and total CO2 emissions in developing countries were increasing, whereas emissions from developed countries have been decreasing slightly.

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 95
Author(s):  
Ghazal Makvandia ◽  
Md. Safiuddin

Efforts have been put in place to minimize the effects of construction activities and occupancy, but the problem of greenhouse gas (GHG) emissions continues to have detrimental effects on the environment. As an effort to reduce GHG emissions, particularly carbon emissions, countable commercial, industrial, institutional, and residential net-zero energy (NZE) buildings were built around the globe during the past few years, and they are still operating. But there exist many challenges and barriers for the construction of NZE buildings. This study identifies the obstacles to developing NZE buildings, with a focus on single-family homes, in the Greater Toronto Area (GTA). The study sought to identify the technical, organizational, and social challenges of constructing NZE buildings, realize the importance of the public awareness in making NZE homes, and provide recommendations on how to raise public knowledge. A qualitative approach was employed to collect the primary data through survey and interviews. The secondary data obtained from the literature review were also used to realize the benefits, challenges, and current situation of NZE buildings. Research results indicate that the construction of NZE buildings is faced with a myriad of challenges, including technical issues, the lack of governmental and institutional supports, and the lack of standardized measures. The public awareness of NZE homes has been found to be very low, thus limiting the uptake and adoption of the new technologies used in this type of homes. The present study also recommends that the government and the academic institutions should strive to support the NZE building technology through curriculum changes, technological uptake, and financial incentives to buyers and developers. The implementation of these recommendations may enhance the success and popularity of NZE homes in the GTA.


2012 ◽  
Vol 51 (4II) ◽  
pp. 209-226
Author(s):  
Shahbaz Nasir

Traditionally, developed countries are the major exporters of services; however, technological developments in IT and communications over the last two decades have made it possible for developing countries to exploit their comparative advantage in some modern services. The driving force for this comparative advantage is the large pool of semi-skilled and skilled graduates in emerging countries who can deliver their services across borders, using advanced communication technologies. Why do emerging countries have increasing modern services exports? How are these exports explained by theory? What are the factors behind this export growth and the reasons to expect future growth? These are some of the important questions that researchers and policy-makers would like to find answers to and an attempt has been made to answer these questions in this paper. Identification of the sources of services export growth from emerging and developing countries can be attempted through established theories of goods trade and production. This paper reviews selected theory and empirical work in order to explain the underlying causes for growing exports of services. Causes for the export of modern services may include a comparative advantage of the exporting country, cost reduction for the importing firm through outsourcing, reduction in trading costs due to technological improvements and an increase in gains from services trade.


2019 ◽  
Vol 11 (22) ◽  
pp. 6236
Author(s):  
Ranjita Singh ◽  
Philip Walsh ◽  
Christina Mazza

Buildings in Canada account for a significant amount of greenhouse gas (GHG) emissions and net zero energy building technology has been identified as part of the solution. This study presents a conceptual model identifying barriers to the adoption of net zero energy housing and tests it by administering a survey to 271 participants in a net zero energy housing demonstration project in Toronto, Canada. Using multivariate correlation and multi-linear regression analyses this study finds that of all the innovation adoption variables it was the construction and design quality that was the most significant contributor to the adoption of a net zero energy home by a potential home owner. This study found that the (a) extra cost compared to a conventional home, b) lack of knowledge about the technology associated with a net zero energy home or (c) not knowing someone who owned a net zero energy home were not significant barriers to accepting net zero energy homes. Our results suggest that policy-makers should promote the diffusion of net zero energy home technology by encouraging housing developers to include net zero energy homes in their collection of model homes, with an emphasis on quality design and construction. Furthermore, engaging in trust building initiatives such as education and knowledge about the technology, its related energy cost savings, and the environmental benefits would contribute to a greater acceptance of net zero energy homes.


2021 ◽  
Vol 13 (24) ◽  
pp. 13917
Author(s):  
Adedayo Johnson Ogungbile ◽  
Geoffrey Q. P. Shen ◽  
Jin Xue ◽  
Tobi Michael Alabi

Understanding the complex CO2 emissions in inter-sectoral and interregional interactions of the construction industry is significant to attaining sustainability in China. Many previous studies focused on aggregating the construction sector’s CO2 emissions on a national level, with the provincial characteristics and interactions often overlooked. Using extended environmental input–output tables, we adopted a hypothetical extraction method combined with extended-environmental multi-regional input–output tables for 2012, 2015, and 2017 data to decompose the CO2 emissions linkages in 30 provincial construction sectors. The provincial carbon emissions data from a complete system boundary informed the recategorization of China’s construction sector as a high-carbon-intensity industry. The interprovincial interactions results show relatively small backward CO2 emissions linkages compared to forward CO2 emissions linkages depicting the industry’s significant role in China’s economic growth and an essential target in CO2 emissions reduction plans. The provinces exhibited different impacts on the directional push–pull, with less developed provinces having one-way directional effects. The more developed provincial sectors behaved more like demand-driven industries creating an overall imbalance in CO2 emissions interaction between the sectors in interregional emission trades. We identified construction sectors in Gansu, Xingjian, Ningxia, and Inner Mongolia as the most critical, with more significant CO2 emissions interactions than other provinces. Improving the technical level in less developed provincial construction sectors, considering provincial characteristics in policy formulation, and a swift shift to renewable energy as a primary energy source would aid in reducing the emissions intensities in the construction sector, especially in the less developed provinces, and achieving China’s quest to reach a CO2 emissions peak by 2030.


2021 ◽  
Vol 13 (8) ◽  
pp. 4172
Author(s):  
Fan He ◽  
Yang Yang ◽  
Xin Liu ◽  
Dong Wang ◽  
Junping Ji ◽  
...  

High-precision CO2 emission data by sector are of great significance for formulating CO2 emission reduction plans. This study decomposes low-precision energy consumption data from China into 149 sectors according to the high-precision input–output (I–O) table for 2017. An economic I–O life cycle assessment model, incorporating sensitivity analysis, is constructed to analyze the distribution characteristics of CO2 emissions among sectors. Considering production, the electricity/heat production and supply sector contributed the most (51.20%) to the total direct CO2 emissions. The top 10 sectors with the highest direct CO2 emissions accounted for > 80% of the total CO2 emissions. From a demand-based perspective, the top 13 sectors with the highest CO2 emissions emitted 5171.14 Mt CO2 (59.78% of the total), primarily as indirect emissions; in particular, the housing construction sector contributed 23.97% of the total. Based on these results, promoting decarbonization of the power industry and improving energy and raw material utilization efficiencies of other production sectors are the primary emission reduction measures. Compared with low-precision models, our model can improve the precision and accuracy of analysis results and more effectively guide the formulation of emission reduction policies.


2018 ◽  
Vol 2 (2) ◽  
pp. 53
Author(s):  
Pedro García SanMiguel ◽  
Julian García Muñoz

Abstract Promoting innovation in the construction sector is one of the cornerstones of sustainability, since it is one of the main responsible for GHG emissions. This paper provides a proposal for sustainable housing: the industrialized passive home of American Building System Company (ABS) and its suitability to be incorporated into the construction system. Following the comparative analysis of the energy demands of this model versus an equivalent house which follows the regulations of the CTE. These data will be simulated by the SG SAVE software that perform the energy simulation of the both systems, based on the transmittance values of enclosures and glass and the final tightness of the homes. From these results about the savings in energy consumption, an economic analysis has been carried out and an assessment of the amortization period of the proposed house facing the other. In addition, through the calculation coefficients of equivalent CO2 emissions from the Spanish Ministry of Industry, the reduction of greenhouse gas emissions associated with energy consumption during the use stage has been obtained. Finally, for a standardize comfort conditions, the modelling and the assessment allow us to conclude that the deployment of ABS house in comparison with the conventional Spanish system supposes a reduction of 60% in energy demand, a 90% in CO2 emissions, and an amortization period of 12 years. With all these evidences we should start to think why this system has not been already integrated in the Spanish construction sector. Resumen Fomentar la innovación en el sector de la construcción es una de las piedras angulares de la sostenibilidad, pues la construcción es uno de los sectores responsables de las emisiones de GEI. Este artículo busca ofrecer una propuesta para la construcción sostenible: la vivienda pasiva industrializada de la empresa American Building System (ABS) y su idoneidad para ser incorporada como sistema constructivo tras el análisis comparativo de sus demandas energéticas frente a los de una vivienda equivalente que sigue la normativa del Código Técnico de la Edificación. Estos datos han sido obtenidos a partir del modelado energético de la vivienda a través del software SG SAVE, en función de los valores de transmitancia de cerramientos y vidrios y la estanqueidad final de la vivienda. A partir de estos resultados se ha realizado un análisis económico y se ha calculado el periodo de amortización de la vivienda propuesta frente a la del sistema convencional. Por otro lado, mediante los coeficientes de cálculo de emisiones del Ministerio de Industria Español, ha sido posible estimar la reducción emisiones de CO2 asociadas al consumo de energía durante la etapa de uso como consecuencia de la reducción de demanda energética entre ambas viviendas. Finalmente, para unas condiciones de confort normalizadas, la modelización energética y el análisis de resultados nos permiten concluir que la vivienda ABS en comparación con la vivienda del sistema convencional español nos permite reducir la demanda energética en hasta un 60%, las emisiones de CO2 en hasta un 90%, con un período de amortización de 12 años. Con todas estas evidencias de mejoría se plantea una reflexión final que es la de por qué este tipo de sistemas constructivos no están todavía integrados en el modelo constructivo español .


2021 ◽  
Author(s):  
Roz Price

Climate change and urbanisation are inextricably linked. With the acceleration of urbanisation in many developing countries, urban areas play a major role in energy consumption and carbon dioxide emissions. This is true of Nepal, which has experienced rapid urbanisation in recent decades. However, no studies were identified that evaluate the efforts of reducing greenhouse gas (GHG) emissions from low carbon cities in rapidly urbanising developing countries. Although, there is literature out there on this that focuses on developed countries and the Global North, this is outside the scope of this report. Given the rapid nature of this review and its limitations it was not possible to fully answer the question of whether investments in low-carbon cities reduce carbon emissions in rapidly urbanising contexts. The first section of this report looks at the theory of low carbon cities and touches on some of the methodologies for measuring carbon emissions from cities (and the complexities and difficulties with these). The second section looks at Nepal in more detail, highlighting previous literature which has attempted to quantify emissions from cities in Nepal (namely Kathmandu Valley) and the co-benefits of low carbon investment in Nepal. However, overall, literature was largely limited on these topics, and was often older being from 5 years or more ago. Of note is an emissions inventory for Nepal for 2016 by Sadavarte et al. (2019) – although other literature notes that data on emission characteristics are still limited (IMC Worldwide, 2020). ICLEI (2009) also produced city emissions profiles for 3 Nepalese cities, but these are quite outdated. There are several studies related to low carbon development pathways for major cities in developed countries or China, however such studies from the perspective of emerging cities from the developing world are limited. Research into other developing countries with similar characteristics to Nepal was briefly explored in this rapid review but there was not time to fully explore this literature base. Most of the literature explored is from academia, although some is from non-governmental organisations particularly those looking at engaging cities in climate action (such as C40). The literature explored does not look at gender issues or issues of people with disabilities.


Author(s):  
Mathupayas Thongmak

Global warming problem is specified as the most important problem threatening the world in recent years. The primary cause of the problem is claimed to be greenhouse gas (GHG) emissions. Sustainable ICTs or green ICTs can significantly help to solve the problem in terms of introducing green innovations or applying ICTs to increase energy management efficiency. In addition, they benefit organizations in the aspects of financial, operational, and strategic advantages. Since developing countries are also the members of societies, they should work together with developed countries in problem solving. Nevertheless, these countries face many limitations such as poverty, development, and so on. Therefore, the systematic support from the developed world is crucial to facilitate their contribution. This paper presents a conceptual framework for implementing sustainable ICTs. This framework can be applied to both developed countries and developing countries. However, this work specifies more details for adopting the framework in developing countries since they are constrained by economy and growth more than the developed world. This work also highlights the systematical cooperation among developed countries and all sectors of developing countries. This framework can help in speeding up the success of sustainable ICTs adoption in developed countries or developing countries. In addition, the paper describes some research directions to support effective application of the proposed framework.


2000 ◽  
Vol 39 (4II) ◽  
pp. 741-750 ◽  
Author(s):  
Abid A Burki ◽  
Shirin Aslam

More and more people are using mobile (cellular) phones and the world is increasingly becoming unwired due to diffusion of this technology. The cellular technology is present in most Asian countries since 1980s. However, its diffusion process in these countries has largely been affected by technological developments, i.e., transition from analogue to digital, and regulations. The nature of regulations relate to spectrum licensing and the number of competitors allowed by respective governments. These regulatory decisions may explain the current structure of mobile phone industry in most of these countries. The popularity of cellular communication lies in its appealing advantage as compared with the fixed networks. The most important feature of a cellular phone is its portability in that the call is made to a person and not to a place. In developed countries, the features available on mobile handsets (such as caller line identification, voice mail, call forwarding, call waiting and the facility of receiving and transmitting short text messages) are available free of charge. However, these cell phone facilities are very costly in developing countries as compared with their fixed networks. The regulatory licensing structure prevailing in these countries partly explains this price differential. In effect there has been wide diversity in the speed of introduction of mobile phones and their diffusion across developing countries, which has not been explored. Gruber and Verboven (1998) has recently examined diffusion of cell phones in the European Union. However, this is a neglected area of research in developing countries.


Sign in / Sign up

Export Citation Format

Share Document