scholarly journals Design Consideration Regarding a Residential Renewable-Based Microgrid with EV Charging Station Capabilities

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5085
Author(s):  
Corneliu Marinescu

Electric Vehicles (EVs) will be a key component of sustainable e-transportation systems. It is important to provide a charging infrastructure for EVs. EVs are “zero” polluting and highly efficient, but these qualities are valid only if the EV is supplied from renewable energy sources (RES). In urban areas, there is a lot of unused space such as roofs of residential and enterprise buildings, roofs of parking lots, building facades, etc. In cities, the PV and small wind turbines RES should be able to supply EVs with clean energy. Such a solution has many advantages. In an EU-financed research project, the team developed a solution for a Residential Charging Station (RCS), the design solution being implemented with the equipment available on the market. In this paper, the design considerations and some challenges raised by it are presented. Improvements of the existing equipment to better suit future needs are further discussed. The proposed solution solves the matter optimally and the implementing it will offer future Smart Cities an RCS with public access with several useful properties.

2019 ◽  
Vol 10 (1) ◽  
pp. 143 ◽  
Author(s):  
Vincent Oldenbroek ◽  
Gilbert Smink ◽  
Tijmen Salet ◽  
Ad J.M. van Wijk

Renewable, reliable, and affordable future power, heat, and transportation systems require efficient and versatile energy storage and distribution systems. If solar and wind electricity are the only renewable energy sources, what role can hydrogen and fuel cell electric vehicles (FCEVs) have in providing year-round 100% renewable, reliable, and affordable energy for power, heat, and transportation for smart urban areas in European climates? The designed system for smart urban areas uses hydrogen production and FCEVs through vehicle-to-grid (FCEV2G) for balancing electricity demand and supply. A techno-economic analysis was done for two technology development scenarios and two different European climates. Electricity and hydrogen supply is fully renewable and guaranteed at all times. Combining the output of thousands of grid-connected FCEVs results in large overcapacities being able to balance large deficits. Self-driving, connecting, and free-floating car-sharing fleets could facilitate vehicle scheduling. Extreme peaks in balancing never exceed more than 50% of the available FCEV2G capacity. A simple comparison shows that the cost of energy for an average household in the Mid Century scenario is affordable: 520–770 €/year (without taxes and levies), which is 65% less compared to the present fossil situation. The system levelized costs in the Mid Century scenario are 71–104 €/MWh for electricity and 2.6–3.0 €/kg for hydrogen—and we expect that further cost reductions are possible.


Author(s):  
Anita Rønne

Increasing focus on sustainable societies and ‘smart cities’ due to emphasis on mitigation of climate change is simultaneous with ‘smart regulation’ reaching the forefront of the political agenda. Consequently, the energy sector and its regulation are undergoing significant innovation and change. Energy innovations include transition from fossil fuels to more renewable energy sources and application of new computer technology, interactively matching production with consumer demand. Smart cities are growing and projects are being initiated for development of urban areas and energy systems. Analysis from ‘Smart Cities Accelerator’, developed under the EU Interreg funding programme that includes Climate-KIC,——provides background for the focus on a smart energy system. Analysis ensures the energy supply systems support the integration of renewables with the need for new technologies and investments. ‘Smart’ is trendy, but when becoming ‘smart’ leads to motivation that is an important step towards mitigating climate change.


2021 ◽  
Author(s):  
Dominik Husarek ◽  
Simon Paulus ◽  
Michael Metzger ◽  
Vjekoslav Salapic ◽  
Stefan Niessen

Since E-Mobility is on the rise worldwide, large Charging Infrastructure (CI) networks are required to satisfy the upcoming Charging Demand (CD). Understanding this CD with its spatial and temporal uncertainties is important for grid operators to quantify the grid impact of Electric Vehicle integration and for Charging Station (CS) operators to assess long-term CI investments. Hence, we introduce an Agent-based E-Mobility Model assessing regional CI systems with their multi-directional interactions between CSs and vehicles. A Global Sensitivity Analysis (GSA) is applied to quantify the impact of 11 technical levers on 17 relevant charging system outputs. The GSA evaluates the E-Mobility integration in terms of grid impact, economic viability of CSs and Service Quality of the deployed Charging Infrastructure (SQCI). Based on this impact assessment we derive general guidelines for E-Mobility integration into regional systems. We found, inter alia, that CI policies should aim at allocating CSs across different types of locations to utilize cross-locational effects such as CSs at public locations affecting the charging peak in residential areas by up to 18%. Additionally, while improving the highway charging network is an effective lever to increase the SQCI in urban areas, public charging is an even stronger lever in rural areas.


2019 ◽  
Vol 11 (12) ◽  
pp. 3314 ◽  
Author(s):  
Wojciech Sałabun ◽  
Krzysztof Palczewski ◽  
Jarosław Wątróbski

The problem of sustainable city transport is a growing field of study, and will be addressed in this paper. With the rising significance of present transportation systems’ negative externalities on the environment, such as the unavoidable increase of air pollution levels, cities seek sustainable means of transport and reduction of combustion cars’ utilization. Moreover, improvements in the area of renewable energy sources have led to rising trends in sustainability, driving the usage and production of electric vehicles. Currently, there is an increasing tendency of looking for more sustainable transport solutions, especially in highly congested urban areas. It seems that in that case, electric bicycles can be a good option, as they yield more benefits in comparison to cars, especially combustion cars. In this paper, we identify an assessment model for the selection of the best electric bicycle for sustainable city transport by using incomplete knowledge. For this purpose, the Characteristic Objects METhod (COMET) is used. The COMET method, proven effective in the assessment of sustainable challenges, is a modern approach, utterly free of the rank reversal phenomenon. The evaluated model considers investigated multiple criteria and is independent of chosen alternatives in the criteria domain. Hence, it can be easily modified and extended for diverse sets of decisional variants. Moreover, the presented approach allows assessing alternatives under conditions of incomplete knowledge, where some data are presented as possible interval numbers.


Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2019 ◽  
Vol 11 (7) ◽  
pp. 2140 ◽  
Author(s):  
Dastan Bamwesigye ◽  
Petra Hlavackova

For decades, transportation has been considered as a link to all aspects of life worldwide. In this case, the world’s natural environment, social well-being and economic development all usually depend on transportation systems. In most cases, safe, clean, sustainable and equitable transport systems help countries, especially in cities and urban centers, to thrive. However, a wide range of research shows that transportation systems in most of the cities and urban areas are unsustainable. In fact, some of these transportation systems are considered to be a threat to the environmental, social and economical aspects of future generations. In this perspective, therefore, changing such trends in transportation requires the collaboration of various stakeholders at regional, national and international levels. In this paper, therefore, a wide range of definitions of sustainable transport are discussed. More so, some of the aspects of smart transport for modern cities such as cycling and the role of women in sustainable transport were explored. With the aim of getting to the core of the subject, cases of women in bicycle transport, especially in the Netherlands and Germany compared to Kenya and Uganda are equally elucidated. Although not fully outlined, the idea of smart cities and sustainable transport have heterogeneous characteristics globally as discussed herein.


2021 ◽  
Author(s):  
Dominik Husarek ◽  
Simon Paulus ◽  
Michael Metzger ◽  
Vjekoslav Salapic ◽  
Stefan Niessen

Since E-Mobility is on the rise worldwide, large Charging Infrastructure (CI) networks are required to satisfy the upcoming Charging Demand (CD). Understanding this CD with its spatial and temporal uncertainties is important for grid operators to quantify the grid impact of Electric Vehicle integration and for Charging Station (CS) operators to assess long-term CI investments. Hence, we introduce an Agent-based E-Mobility Model assessing regional CI systems with their multi-directional interactions between CSs and vehicles. A Global Sensitivity Analysis (GSA) is applied to quantify the impact of 11 technical levers on 17 relevant charging system outputs. The GSA evaluates the E-Mobility integration in terms of grid impact, economic viability of CSs and Service Quality of the deployed Charging Infrastructure (SQCI). Based on this impact assessment we derive general guidelines for E-Mobility integration into regional systems. We found, inter alia, that CI policies should aim at allocating CSs across different types of locations to utilize cross-locational effects such as CSs at public locations affecting the charging peak in residential areas by up to 18%. Additionally, while improving the highway charging network is an effective lever to increase the SQCI in urban areas, public charging is an even stronger lever in rural areas.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8399
Author(s):  
Michéle Weisbach ◽  
Tobias Schneider ◽  
Dominik Maune ◽  
Heiko Fechtner ◽  
Utz Spaeth ◽  
...  

This article deals with the major challenge of electric vehicle charging infrastructure in urban areas—installing as many fast charging stations as necessary and using them as efficiently as possible, while considering grid level power limitations. A smart fast charging station with four vehicle access points and an intelligent load management algorithm based on the combined charging system interface is presented. The shortcomings of present implementations of the combined charging system communication protocol are identified and discussed. Practical experiments and simulations of different charging scenarios validate the concept and show that the concept can increase the utilization time and the supplied energy by a factor of 2.4 compared to typical charging station installations.


2020 ◽  
pp. 158-194
Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Muhammad Alam ◽  
Davide Moroni ◽  
Gabriele Pieri ◽  
Marco Tampucci ◽  
Miguel Gomes ◽  
...  

Intelligent Transportation Systems (ITS) have evolved as a key research topic in recent years, revolutionizing the overall traffic and travel experience by providing a set of advanced services and applications. These data-driven services contribute to mitigate major problems arising from the ever growing need of transport in our daily lives. Despite the progress, there is still need for an enhanced and distributed solution that can exploit the data from the available systems and provide an appropriate and real-time reaction on transportation systems. Therefore, in this paper, we present a new architecture where the intelligence is distributed and the decisions are decentralized. The proposed architecture is scalable since the incremental addition of new peripheral subsystems is supported by the introduction of gateways which requires no reengineering of the communication infrastructure. The proposed architecture is deployed to tackle the problem of traffic management inefficiency in urban areas, where traffic load is substantially increased, by vehicles moving around unnecessarily, to find a free parking space. This can be significantly reduced through the availability and diffusion of local information regarding vacant parking slots to drivers in a given area. Two types of parking systems, magnetic and vision sensor based, have been introduced, deployed, and tested in different scenarios. The effectiveness of the proposed architecture, together with the proposed algorithms, is assessed in field trials.


Sign in / Sign up

Export Citation Format

Share Document