scholarly journals Improving the Energy Efficiency of Buildings Based on Fluid Dynamics Models: A Critical Review

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5384
Author(s):  
Xiaoshu Lü ◽  
Tao Lu ◽  
Tong Yang ◽  
Heidi Salonen ◽  
Zhenxue Dai ◽  
...  

The built environment is the global sector with the greatest energy use and greenhouse gas emissions. As a result, building energy savings can make a major contribution to tackling the current energy and climate change crises. Fluid dynamics models have long supported the understanding and optimization of building energy systems and have been responsible for many important technological breakthroughs. As Covid-19 is continuing to spread around the world, fluid dynamics models are proving to be more essential than ever for exploring airborne transmission of the coronavirus indoors in order to develop energy-efficient and healthy ventilation actions against Covid-19 risks. The purpose of this paper is to review the most important and influential fluid dynamics models that have contributed to improving building energy efficiency. A detailed, yet understandable description of each model’s background, physical setup, and equations is provided. The main ingredients, theoretical interpretations, assumptions, application ranges, and robustness of the models are discussed. Models are reviewed with comprehensive, although not exhaustive, publications in the literature. The review concludes by outlining open questions and future perspectives of simulation models in building energy research.

2020 ◽  
Vol 12 (19) ◽  
pp. 7961 ◽  
Author(s):  
Shady Attia

Climate responsive design can amplify the positive environmental effects necessary for human habitation and constructively engage and reduce the energy use of existing buildings. This paper aims to assess the role of the thermal adaptation design strategy on thermal comfort perception, occupant behavior, and building energy use in twelve high-performance Belgian households. Thermal adaptation involves thermal zoning and behavioral adaptation to achieve thermal comfort and reduce energy use in homes. Based on quantitative and qualitative fieldwork and in-depth interviews conducted in Brussels, the paper provides insights on the impact of using mechanical systems in twelve newly renovated nearly- and net-zero energy households. The article calls for embracing thermal adaptation as a crucial design principle in future energy efficiency standards and codes. Results confirm the rebound effect in nearly zero energy buildings and the limitation of the current building energy efficiency standards. The paper offers a fresh perspective to the field of building energy efficiency that will appeal to researchers and architects, as well as policymakers.


2016 ◽  
Vol 9 (1) ◽  
pp. 229
Author(s):  
Valerie Patrick ◽  
Leslie A. Billhymer ◽  
William Shephard

The U.S. Department of Energy [DOE] established the Consortium for Building Energy Innovation [CBEI] to address commercial building energy efficiency as an innovation cluster, where the regional market context (Note 1) guides the research agenda for market transformation (Porter, 2001). CBEI develops content to support Advanced Energy Retrofits (AERs), a retrofit which results in 50% or greater reduction in building energy use, in small- and medium- sized commercial buildings (less than 250 000 ft<sup>2</sup>). The challenge is collecting input for a market with many stakeholders so that a strategy emerges to implement AERs. This research applies systems and complexity theories to develop a strategy to promote the emergence of AERs in this market incorporating multiple stakeholder perspectives (Note 2).


Author(s):  
Joe Huang ◽  
Donghyun Seo ◽  
Moncef Krarti

The Changning District in Shanghai has expressed interest to becoming a green neighborhood and has asked for recommendations on how to reduce the energy usage in public buildings in their district. The objective of this short study is to identify the likely range of further reductions in the energy use and carbon emissions of new buildings through energy-efficiency improvements and the use of renewable energy, i.e., solar hot water (SHW), photovoltaics (PV), and ground-source heat pumps (GSHP), as compared to buildings that meet the current public building energy code in Shanghai. This analysis is done using DOE-2.1E computer simulations of three prototypical building models — an office, a hotel, and a mixed-use retail/office building — that have been calibrated against measured energy data from such buildings in the Changning District. After the building models have been calibrated, they are then used to establish the baseline energy use for code-compliant buildings, and to calculate the energy savings for 16 potential EEMs (Energy Efficiency Measures) that exceed the building energy code. A LCC (Life-Cycle Cost) analysis is done to compare the energy cost reductions to the capital costs for the EEMs, with the result that some EEMs are rejected as being not cost-effective over a 25 year period. The usage of the EEMs accepted as cost-effective is found to reduce the energy usage of the three building types by 30–40% in the office, 43–46% in the hotel, and 35% in the retail, depending on the assumed discount rate. If all the EEMs are considered regardless of cost, the energy savings increase to 44% in the office, 47% in the hotel, and 36% in the retail.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 35 ◽  
Author(s):  
Abbas M. Al-Ghaili ◽  
Hairoladenan Kasim ◽  
Marini Othman ◽  
Zainuddin Hassan

This paper highlights a number of recently published research studies during last five years in order to provide a summary related to latest trends of energy efficiency in the smart buildings technology. It reviews numerous technical methods applied to achieve a high level of Building Energy Efficiency (BEE). In this paper, methods applied to measure the BEE and to predict the energy-use have been considered and reviewed. Furthermore, some other methods discussed in articles which consider retrofitting of interior design of buildings have been taken. One of the most impacts that has been considered is the light control system because it directly affects the energy use. This paper has reviewed different types of techniques that save energy consumptions such as predictive techniques of energy use, Internet of Things (IoT) buildings, light control systems inside buildings, and Quick Response (QR) code based services used to notify occupants for energy-use. It has provided a simple comparison between different techniques used to retrofit the interior design of buildings due to its high importance in saving energy. The paper has also recommended suitability of methods taking into account the existing situation, design, limitations, and conditions of the building being studied.


2016 ◽  
Vol 106 (10) ◽  
pp. 2867-2894 ◽  
Author(s):  
Arik Levinson

Regulations governing the energy efficiency of new buildings have become a cornerstone of US environmental policy. California enacted the first such codes in 1978 and has tightened them every few years since. I evaluate the resulting energy savings three ways: comparing energy used by houses constructed under different standards, controlling for building and occupant characteristics; examining how energy use varies with outdoor temperatures; and comparing energy used by houses of different vintages in California to that same difference in other states. All three approaches yield estimated energy savings significantly short of those projected when the regulations were enacted. (JEL Q48, Q51, Q52)


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Milica Radic ◽  
Dejan Petkovic

Saving energy in buildings without losing the comfort of the occupants is contradictory request. It has been shown that the use of smart thermostats to HVAC systems reduce energy consumption as much as thirty percent. Depending on the number of different, pre-defined temperature levels, energy savings might be even greater. The method for determining the coefficient of utilization which is based on a normal time temperature distribution is proposed. Key words:Building energy efficiency, TRIZ matrix, Intelligent agents, Coefficient of utilization


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4850
Author(s):  
Kwok Wai Mui ◽  
Ling Tim Wong ◽  
Manoj Kumar Satheesan ◽  
Anjana Balachandran

In Hong Kong, buildings consume 90% of the electricity generated and over 60% of the city’s carbon emissions are attributable to generating power for buildings. In 2018, Hong Kong residential sector consumed 41,965 TJ (26%) of total electricity generated, with private housing accounting for 52% and public housing taking in 26%, making them the two major contributors of greenhouse gas emissions. Furthermore, air conditioning was the major source consuming 38% of the electricity generated for the residential building segment. Strategizing building energy efficiency measures to reduce the cooling energy consumption of the residential building sector can thus have far-reaching benefits. This study proposes a hybrid simulation strategy that integrates artificial intelligence techniques with a building energy simulation tool (EnergyPlus™) to predict the annual cooling energy consumption of residential buildings in Hong Kong. The proposed method predicts long-term thermal energy demand (annual cooling energy consumption) based on short-term (hourly) simulated data. The hybrid simulation model can analyze the impacts of building materials, construction solutions, and indoor–outdoor temperature variations on the cooling energy consumed in apartments. The results indicate that using low thermal conductivity building materials for windows and external walls can reduce the annual cooling energy consumption by 8.19%, and decreasing the window-to-wall ratio from 80% to 40% can give annual cooling energy savings of up to 18%. Moreover, significant net annual cooling energy savings of 13.65% can be achieved by changing the indoor set-point temperature from 24 °C to 26 °C. The proposed model will serve as a reference for building energy efficiency practitioners to identify key relationships between building physical characteristics and operational strategies to minimize cooling energy demand at a minimal time in comparison to traditional energy estimation methods.


2021 ◽  
Vol 7 (34) ◽  
pp. eabg0947
Author(s):  
Kenneth T. Gillingham ◽  
Pei Huang ◽  
Colby Buehler ◽  
Jordan Peccia ◽  
Drew R. Gentner

Intensive building energy efficiency improvements can reduce emissions from energy use, improving outdoor air quality and human health, but may also affect ventilation and indoor air quality. This study examines the effects of highly ambitious, yet feasible, building energy efficiency upgrades in the United States. Our energy efficiency scenarios, derived from the literature, lead to a 6 to 11% reduction in carbon dioxide emissions and 18 to 25% reductions in particulate matter (PM2.5) emissions in 2050. These reductions are complementary with a carbon pricing policy on electricity. However, our results also point to the importance of mitigating indoor PM2.5 emissions, improving PM2.5 filtration, and evaluating ventilation-related policies. Even with no further ventilation improvements, we estimate that intensive energy efficiency scenarios could prevent 1800 to 3600 premature deaths per year across the United States in 2050. With further investments in indoor air quality, this can rise to 2900 to 5100.


2012 ◽  
Vol 7 (4) ◽  
pp. 116-129 ◽  
Author(s):  
Queena K. Qian ◽  
Edwin H.W. Chan ◽  
Lennon HT Choy

Buildings account for 40% of global energy consumption and nearly one-third of global CO2emissions; and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This paper analyzes the concerns of uncertainty, in terms of transaction costs, to the real estate developers when they make decisions about investing in Building Energy Efficiency (BEE). To solicit views of developers regarding BEE investment, in-depth interviews were conducted with 15 executives and architects who work in big real estate development firms covering 80% of real estate activities in Hong Kong. This research applies transaction cost economics (TCE) to study the underlying reasons resulting from uncertainty that cause market reluctance to accept BEE by choice. It provides a detailed analysis of the current situation and future prospects for BEE adoption through studying the impacts from three aspects: economic, market and policy uncertainties. It delineates the market and suggests possible policy solutions to overcome the uncertainties and to attain the large-scale deployment of energy-efficient building techniques. The findings establish the groundwork for future studies on how to choose a particular policy package and what roles government should play to solve the existing problems in BEE development.


Sign in / Sign up

Export Citation Format

Share Document