scholarly journals Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5737
Author(s):  
Tomas Kropas ◽  
Giedrė Streckienė ◽  
Juozas Bielskus

The application of heat pumps in the heating systems of buildings in the cold or transitional season is becoming an increasingly common practice not only in Lithuania but in other countries as well. Due to the growing popularity of air-to-air or air-to-water heat pumps in the building sector, the problem of the evaporator heat exchanger freezing is also becoming more and more relevant. As the outdoor temperature drops, so does the heat pump’s coefficient of performance (COP) for heating. The freezing of the evaporator surface increases the energy consumption of the system, has a negative effect on heat exchange, distorts the normal operating cycle of the heat pump and the energy is wasted for defrosting processes. This article describes the experimental investigation of an air-to-water heat pump, presents the results obtained during the experiments and their interfaces. The experiments were carried out during the transitional/cold season. It was found that frost formation on the evaporator started when the outdoor temperature was <3.5 °C and the relative humidity reached 88%. The defrosting cycle took an average of 5 min. The impact of the evaporator freezing on the operation and COP of the heat pump was assessed.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 766 ◽  
Author(s):  
Jochen Conrad ◽  
Simon Greif

Approximately one quarter of energy-related emissions in Germany are caused by the domestic sector. At 81%, the largest share of these emissions is due to heat supply. Many measures are available to reduce these emissions. One of these measures, which is considered to play an important role in many studies, is the replacement of fossil-fired boilers with electric heat pumps. In order to be able to analyse the impact of high penetrations of heat pumps on the energy system, the coefficient of performance (COP) must be modelled with high temporal resolution. In this study, a methodology is presented on how to calculate high-resolution COPs and the electrical load of heat pumps based on thermal load curves and temperature time series. The COP is determined by the reciprocal Carnot factor. Since heat pumps are often designed bivalently due to the cost structure, the methodology described can also be used for evaluating the combination of immersion heater and heat pump (here for the air/water heat pump). As a result the theoretical hourly COPs determined are calibrated with annual performance factors from field tests. The modelled COPs show clear differences. Currently, mostly air source heat pumps are installed in Germany. If this trend continues, the maximum electrical load of the heat supply will increase more than would be the case with higher shares of ground source heat pumps.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Florian Schlosser ◽  
Heinrich Wiebe ◽  
Timothy G. Walmsley ◽  
Martin J. Atkins ◽  
Michael R. W. Walmsley ◽  
...  

Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%.


2021 ◽  
Vol 11 (5) ◽  
pp. 2279
Author(s):  
Sangwon Seo ◽  
František Mikšík ◽  
Yuta Maeshiro ◽  
Kyaw Thu ◽  
Takahiko Miyazaki

In this study, we evaluated the performance of low Global Warming Potential (GWP) refrigerant R1234yf on the activated carbon (MSC-30) for adsorption heating applications. The adsorption isotherms of MSC-30/R1234yf were measured using a constant-volume–variable-pressure (CVVP) method from very low relative pressure to the practical operating ranges. The data were fitted with several isotherm models using non-linear curve fitting. An improved equilibrium model was employed to investigate the influence of dead thermal masses, i.e., the heat exchanger assembly and the non-adsorbing part of the adsorbent. The model employed the model for the isosteric heat of adsorption where the adsorbed phase volume was accounted for. The performance of the heat pump was compared with MSC-30/R134a pair using the data from the literature. The analysis covered the desorption temperature ranging from 60 °C to 90 °C, with the evaporation temperature at 5 °C and the adsorption temperature and condensation temperature set to 30 °C. It was observed that the adsorption isotherms of R1234yf on MSC-30 were relatively lower than those of R134a by approximately 12%. The coefficient of performance (COP) of the selected pair was found to vary from 0.03 to 0.35 depending on the heat source temperature. We demonstrated that due to lower latent heat, MSC-30/R1234yf pair exhibits slightly lower cycle performance compared to the MSC-30/R134a pair. However, the widespread adaptation of environmentally friendly R1234yf in automobile heat pump systems may call for the implementation of adsorption systems such as the direct hybridization using a single refrigerant. The isotherm and performance data presented in this work will be essential for such applications.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1576
Author(s):  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Bartosz Kaźmierczak ◽  
Elżbieta Niemierka ◽  
Wandong Zheng

Heating and cooling sectors contribute to approximately 50% of energy consumption in the European Union. Considering the fact that heating is mostly based on fossil fuels, it is then evident that its decarbonization is one of the crucial tasks for achieving climate change prevention goals. At the same time, electricity sectors across the globe are undergoing a rapid transformation in order to accommodate the growing capacities of non-dispatchable solar and wind generators. One of the proposed solutions to achieve heating sector decarbonization and non-dispatchable generators power system integration is sector coupling, where heat pumps are perceived as a perfect fit. Air source heat pumps enable a rapid improvement in local air quality by replacing conventional heating sources, but at the same time, they put additional stress on the power system. The emissions associated with heat pump operation are a combination of power system energy mix, weather conditions and heat pump technology. Taking the above into consideration, this paper presents an approach to estimate which of the mentioned factors has the highest impact on heat pump emissions. Due to low air quality during the heating season, undergoing a power system transformation (with a relatively low share of renewables) in a case study located in Poland is considered. The results of the conducted analysis revealed that for a scenario where an air-to-water (A/W) heat pump is supposed to cover space and domestic hot water load, its CO2 emissions are shaped by country-specific energy mix (55.2%), heat pump technology (coefficient of performance) (33.9%) and, to a lesser extent, by changing climate (10.9%). The outcome of this paper can be used by policy makers in designing decarbonization strategies and funding distribution.


Author(s):  
Mohammad Omar Temori ◽  
František Vranay

In this work, a mini review of heat pumps is presented. The work is intended to introduce a technology that can be used to income energy from the natural environment and thus reduce electricity consumption for heating and cooling. A heat pump is a mechanical device that transfers heat from one environmental compartment to another, typically against a temperature gradient (i.e. from cool to hot). In order to do this, an energy input is required: this may be mechanical, electrical or thermal energy. In most modern heat pumps, electrical energy powers a compressor, which drives a compression - expansion cycle of refrigerant fluid between two heat exchanges: a cold evaporator and a warm condenser. The efficiency or coefficient of performance (COP), of a heat pump is defined as the thermal output divided by the primary energy (electricity) input. The COP decreases as the temperature difference between the cool heat source and the warm heat sink increases. An efficient ground source heat pump (GSHP) may achieve a COP of around 4. Heat pumps are ideal for exploiting low-temperature environmental heat sources: the air, surface waters or the ground. They can deliver significant environmental (CO2) and cost savings.


Author(s):  
Praveen Cheekatamarla ◽  
Vishaldeep Sharma ◽  
Bo Shen

Abstract Economic and population growth is leading to increased energy demand across all sectors – buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Supporting the current and future building thermal energy needs to offset the total electric demand while lowering the carbon footprint and enhancing the grid flexibility is presented in this study. Performance assessment of heat pumps, renewable energy, non-fossil fuel-based cogeneration systems, and their hybrid configurations was conducted. The impact of design configuration, coefficient of performance (COP), electric grid's primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Limei Gai ◽  
Petar Sabev Varbanov ◽  
Timothy Gordon Walmsley ◽  
Jiří Jaromír Klemeš

To date, research on heat pumps (HP) has mainly focused on vapour compression heat pumps (VCHP), transcritical heat pumps (TCHP), absorption heat pumps, and their heat integration with processes. Few studies have considered the Joule cycle heat pump (JCHP), which raises several questions. What are the characteristics and specifics of these different heat pumps? How are they different when they integrate with the processes? For different processes, which heat pump is more appropriate? To address these questions, the performance and integration of different types of heat pumps with various processes have been studied through Pinch Methodology. The results show that different heat pumps have their own optimal application range. The new JCHP is suitable for processes in which the temperature changes of source and sink are both massive. The VCHP is more suitable for the source and sink temperatures, which are near-constant. The TCHP is more suitable for sources with small temperature changes and sinks with large temperature changes. This study develops an approach that provides guidance for the selection of heat pumps by applying Process Integration to various combinations of heat pump types and processes. It is shown that the correct choice of heat pump type for each application is of utmost importance, as the Coefficient of Performance can be improved by up to an order of magnitude. By recovering and upgrading process waste heat, heat pumps can save 15–78% of the hot utility depending on the specific process.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


Author(s):  
Yahya I. Sharaf-Eldeen

This work involves measurements, analyses, and evaluation of performance of air-source heat pump water heaters (HPWHs), and their impacts on electric utility loads. Two add-on, heat pumps (HPs) rated at 7000 BTU/h (2.051 kW) and 12,000 BTU/h (3.517 kW) were utilized. The HPs were retrofitted to two 50 gal (189.3 l) electric water heaters (EWHs) with their electric heating elements removed. A third standard EWH was used for comparison. The testing setups were fully instrumented for measurements of all pertinent parameters, including inlet and outlet water temperatures, inlet and outlet air temperatures of the HPs, temperature and humidity of the surrounding air, volume of water drawn out of the storage tanks, as well as the electric energy consumptions of the systems. Performance measures evaluated included the coefficient of performance, the energy factor (EF), and the first hour rating (FHR). The HPWH systems gave EFs ranging from 1.8 to 2.5 and corresponding energy savings (and reductions in utility peak loads) ranging from 49.0% to 63.0%, approximately. The values obtained in the summer months were, as expected, somewhat higher than those obtained in the winter ones. The average values of the EFs and energy savings (and reductions in utility peak loads) were about 2.1 and 56.0%, respectively. FHR results were much lower for the HPWHs compared with those for the standard EWH. These results show that HPWHs are much more efficient compared with standard EWHs. While the average value of the EF for the EWH was about 0.92, the HPWHs yielded EFs averaging more than 2.00, resulting in annual energy savings averaging more than 50%. The results also show that HPWHs are effective at reducing utility peak loads, in addition to providing substantial cost savings to consumers.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 479
Author(s):  
Ignacio Paniagua ◽  
Ángel Álvaro ◽  
Javier Martín ◽  
Celina Fernández ◽  
Rafael Carlier

Although CO 2 as refrigerant is well known for having the lowest global warming potential (GWP), and commercial domestic heat pump water heater systems exist, its long expected wide spread use has not fully unfolded. Indeed, CO 2 poses some technological difficulties with respect to conventional refrigerants, but currently, these difficulties have been largely overcome. Numerous studies show that CO 2 heat pump water heaters can improve the coefficient of performance (COP) of conventional ones in the given conditions. In this study, the performances of transcritical CO 2 and R410A heat pump water heaters were compared for an integrated nearly zero-energy building (NZEB) application. The thermodynamic cycle of two commercial systems were modelled integrating experimental data, and these models were then used to analyse both heat pumps receiving and producing hot water at equal temperatures, operating at the same ambient temperature. Within the range of operation of the system, it is unclear which would achieve the better COP, as it depends critically on the conditions of operation, which in turn depend on the ambient conditions and especially on the actual use of the water. Technology changes on each side of the line of equal performance conditions of operation (EPOC), a useful design tool developed in the study. The transcritical CO 2 is more sensitive to operating conditions, and thus offers greater flexibility to the designer, as it allows improving performance by optimising the global system design.


Sign in / Sign up

Export Citation Format

Share Document