scholarly journals Optimal Rotating Receiver Angles Estimation for Multicoil Dynamic Wireless Power Transfer

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6144
Author(s):  
Bohdan Pakhaliuk ◽  
Viktor Shevchenko ◽  
Jan Mućko ◽  
Oleksandr Husev ◽  
Mykola Lukianov ◽  
...  

This study proposed an approach to dynamic wireless charging that uses a rotating receiver coil. Our simulation study focused on the verification of a novel way of increasing the coupling coefficient and power transfer stability by following the flux of the transmitting coils. To obtain the highest possible coupling by means of the FEM analysis, we studied the optimization of the trajectory of the angular velocity of the rotating receiver. The coupling coefficient trajectories that were obtained were simulated by means of the state space model with three transmitters. Our comprehensive analysis showed that the proposed approach of wireless power transmission enabled a 40% increase in the usage of track space.

2021 ◽  
Author(s):  
Sahar Bareli ◽  
Lidor Geri ◽  
Yasha Nikulshin ◽  
Oren E. Nahum ◽  
Yuval Hadas ◽  
...  

We explore the effects of various receiver coil dimensions and configurations on power transfer efficiency and cost of operation, using advanced simulation tools. We demonstrate that the spatial distribution of the magnetic field leads to a non-monotonic dependence of the coupling coefficient on coil size. Thus, an optimal coil size, where the coupling coefficient peaks, should be regarded a crucial design parameter which affects the entire system performances. The incorporation of our findings into a multi-objective optimization algorithm is also discussed.


2021 ◽  
Author(s):  
Sahar Bareli ◽  
Lidor Geri ◽  
Yasha Nikulshin ◽  
Oren E. Nahum ◽  
Yuval Hadas ◽  
...  

We explore the effects of various receiver coil dimensions and configurations on power transfer efficiency and cost of operation, using advanced simulation tools. We demonstrate that the spatial distribution of the magnetic field leads to a non-monotonic dependence of the coupling coefficient on coil size. Thus, an optimal coil size, where the coupling coefficient peaks, should be regarded a crucial design parameter which affects the entire system performances. The incorporation of our findings into a multi-objective optimization algorithm is also discussed.


2017 ◽  
Vol 137 (4) ◽  
pp. 326-333
Author(s):  
Chiaki Nagai ◽  
Kenji Inukai ◽  
Masato Kobayashi ◽  
Tatsuya Tanaka ◽  
Kensho Abumi ◽  
...  

2021 ◽  
Vol 214 (4) ◽  
Author(s):  
Osamu Shimizu ◽  
Takashi Utsu ◽  
Hiroshi Fujimoto ◽  
Daisuke Gunji ◽  
Isao Kuwayama

Author(s):  
Anurag Saxena ◽  
Paras Raizada ◽  
Lok Prakash Gautam ◽  
Bharat Bhushan Khare

Wireless power transmission is the transmission of electrical energy without using any conductor or wire. It is useful to transfer electrical energy to those places where it is hard to transmit energy using conventional wires. In this chapter, the authors designed and implemented a wireless power transfer system using the basics of radio frequency energy harvesting. Numerical data are presented for power transfer efficiency of rectenna. From the simulated results, it is clear that the anticipated antenna has single band having resonant frequency 2.1 GHz. The anticipated antenna has impedance bandwidth of 62.29% for single band. The rectenna has maximum efficiency of 60% at 2.1 GHz. The maximum voltage obtained by DC-DC converter is 4V at resonant frequency.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3260 ◽  
Author(s):  
Chengxin Luo ◽  
Dongyuan Qiu ◽  
Manhao Lin ◽  
Bo Zhang

In the multi-load wireless power transfer (WPT) system, the output power and transfer efficiency will drop significantly with the change of distance between transmitter and receiver. Power distribution among multiple loads is also a major challenge. In order to solve these problems, a novel multi-load WPT system based on parity–time symmetry (PT-WPT) is proposed in this paper. Firstly, the multi-load PT-WPT system is modeled based on the circuit model. Then, the transmission characteristics of the multi-load PT-WPT system are analyzed. It is found that constant output power with constant transfer efficiency can be maintained against the variation of coupling coefficient, and the power distribution relationship among loads is only related to the coupling coefficient. Further, power distribution under different coupling situations is analyzed in detail to meet different power demands. Finally, taking a dual-load PT-WPT system as an example, the system parameters are designed and the circuit simulation is carried out. The simulation results are consistent with the theoretical analysis, which shows that PT symmetry can be applied to the multi-load WPT system to achieve constant output power, constant transfer efficiency, and power distribution simultaneously.


Sign in / Sign up

Export Citation Format

Share Document