scholarly journals A Novel Ultra-Short-Term PV Power Forecasting Method Based on DBN-Based Takagi-Sugeno Fuzzy Model

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6447
Author(s):  
Ling Liu ◽  
Fang Liu ◽  
Yuling Zheng

Forecasting uncertainties limit the development of photovoltaic (PV) power generation. New forecasting technologies are urgently needed to improve the accuracy of power generation forecasting. In this paper, a novel ultra-short-term PV power forecasting method is proposed based on a deep belief network (DBN)-based Takagi-Sugeno (T-S) fuzzy model. Firstly, the correlation analysis is used to filter redundant information. Furthermore, a T-S fuzzy model, which integrates fuzzy c-means (FCM) for the fuzzy division of input variables and DBN for fuzzy subsets forecasting, is developed. Finally, the proposed method is compared to a benchmark DBN method and the T-S fuzzy model in case studies. The numerical results show the feasibility and flexibility of the proposed ultra-short-term PV power forecasting approach.

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1717
Author(s):  
Wanxing Ma ◽  
Zhimin Chen ◽  
Qing Zhu

With the fast expansion of renewable energy systems during recent years, the stability and quality of smart grids using solar energy have been challenged because of the intermittency and fluctuations. Hence, forecasting photo-voltaic (PV) power generation is essential in facilitating planning and managing electricity generation and distribution. In this paper, the ultra-short-term forecasting method for solar PV power generation is investigated. Subsequently, we proposed a radial basis function (RBF)-based neural network. Additionally, to improve the network generalization ability and reduce the training time, the numbers of hidden layer neurons are limited. The input of neural network is selected as the one with higher Spearman correlation among the predicted power features. The data are normalized and the expansion parameter of RBF neurons are adjusted continuously in order to reduce the calculation errors and improve the forecasting accuracy. Numerous simulations are carried out to evaluate the performance of the proposed forecasting method. The mean absolute percentage error (MAPE) of the testing set is within 10%, which show that the power values of the following 15 min. can be predicted accurately. The simulation results verify that our method shows better performance than other existing works.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Yeau Chang

An accurate forecasting method for power generation of the wind energy conversion system (WECS) is urgently needed under the relevant issues associated with the high penetration of wind power in the electricity system. This paper proposes a hybrid method that combines orthogonal least squares (OLS) algorithm and genetic algorithm (GA) to construct the radial basis function (RBF) neural network for short-term wind power forecasting. The RBF neural network is composed of three-layer structures, which contain the input, hidden, and output layers. The OLS algorithm is used to determine the optimal number of nodes in a hidden layer of RBF neural network. With an appropriate RBF neural network structure, the GA is then used to tune the parameters in the network, including the centers and widths of RBF and the connection weights in second stage. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a WECS installed in Taichung coast of Taiwan. Comparisons of forecasting performance are made to the persistence method and back propagation neural network. The good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3551 ◽  
Author(s):  
Fang Liu ◽  
Ranran Li ◽  
Aliona Dreglea

Accurate wind power and wind speed forecasting remains a critical challenge in wind power systems management. This paper proposes an ultra short-time forecasting method based on the Takagi–Sugeno (T–S) fuzzy model for wind power and wind speed. The model does not rely on a large amount of historical data and can obtain accurate forecasting results though efficient linearization. The proposed method employs meteorological measurements as input. Next, the antecedent and the consequent parameters of the forecasting model are identified by the fuzzy c-means clustering algorithm and the recursive least squares method. From these components, the T–S fuzzy model is obtained. Wind farms located in China (Shanxi Province) and in Ireland (County Kerry) are considered as cases with which to validate the proposed forecasting method. The forecasting results are compared with results from the contemporary machine learning-based models including support vector machine (SVM), the combined model of SVM and empirical mode decomposition, and back propagation neural network methods. The results show that the proposed T–S fuzzy model can effectively improve the precision of the short-term wind power forecasting.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4017 ◽  
Author(s):  
Dukhwan Yu ◽  
Wonik Choi ◽  
Myoungsoo Kim ◽  
Ling Liu

The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been proposed for increasing prediction performance in practical environments through statistical, machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of forecasting PV power generation remains to be challenging in power system operations since existing methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed. Many existing methods using long historical data suffer from the long-term dependency problem and are not able to produce high prediction accuracy due to their failure to fully utilize all features of long sequence inputs. To address this problem, we propose a deep learning-based PV power generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction accuracy by capturing the local context of the data and generating keys and queries that fit the local context. To validate the applicability of the proposed model, we conduct extensive experiments on both PV power generation forecasting using a real world dataset and power consumption forecasting. The experimental results of power generation forecasting using the real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical self-attention, respectively.


Author(s):  
Si Yang ◽  
Long Zhao ◽  
Xueshan Han ◽  
Yong Wang ◽  
Wenbo Li ◽  
...  

2020 ◽  
Vol 39 (3) ◽  
pp. 4547-4556
Author(s):  
Wen Yu ◽  
Francisco Vega

 The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.


Sign in / Sign up

Export Citation Format

Share Document