scholarly journals Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6874
Author(s):  
Georg Göhler ◽  
Anna-Lena Klingler ◽  
Florian Klausmann ◽  
Dieter Spath

Intelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and building blocks. In comparison to related studies, we use a simulation model for energy planning with a high time-resolution from the perspective of the energy system planner. In this study, we address the challenges of the grid connection in combination with an increasing number of electric vehicles (EV) in the future. The here developed model is applied for an innovative building block in Germany with a photovoltaic (PV) system, a combined heat and power (CHP) unit, battery storage and electric vehicles. The results of the simulation are validated with real-life data to illustrate the practical relevance and show that our simulation model is able to support the planning of decentralised energy systems. We demonstrate that without anticipating future electric vehicle charging, the system configurations could be sub-optimal if complete self-sufficiency is the objective: in our case study, the rate of self-sufficiency of the net-zero energy building will be lowered from 100% to 91% if considering electric vehicles. Furthermore, our simulation shows that a peak minimising operation strategy with a battery can prevent grid overloads caused by EV charging in the future. Simulating different battery operation strategies can further help to implement the most useful strategy, without interruption of the current operation.

Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


2014 ◽  
Vol 875-877 ◽  
pp. 1827-1830 ◽  
Author(s):  
Xian Qiu Tan ◽  
Sheng Chun Yang ◽  
Yan Ping Fang ◽  
Dong Xue

Electric vehicle charging station provides power supply for electric vehicles running, and it is the most important supporting infrastructure of electric vehicles. The article analyses three modes of electric vehicle charging station charging methods, discusses the advantages and disadvantages of each model, gives the developing trend of the pattern of the operation of electric vehicles, and provides some effective suggestions for electric vehicle charging station for the future.


Author(s):  
Niklas Wulff ◽  
Felix Steck ◽  
Hans Christian Gils ◽  
Carsten Hoyer-Klick ◽  
Bent van den Adel ◽  
...  

Battery electric vehicles provide an opportunity to balance supply and demand in future power systems with high shares of fluctuating renewable energy. Compared to other storage systems such as pumped-storage hydroelectricity, electric vehicle energy demand is highly dependent on charging and connection choices of vehicle users. We present a model framework of a utility-based stock and flow model, a utility-based microsimulation of charging decisions, and an energy system model including respective interfaces to assess how the representation of battery electric vehicle charging affects energy system optimization results. We then apply the framework to a scenario study for controlled charging of nine million electric vehicles in Germany in 2030. Assuming a respective fleet power demand of 27 TWh, we analyze the difference between power-system-based and vehicle user-based charging decisions in two respective scenarios. Our results show that taking into account vehicle users’ charging and connection decisions significantly decreases the load shifting potential of controlled charging. The analysis of marginal values of equations and variables of the optimization problem yields valuable insights on the importance of specific constraints and optimization variables. In particular, state-of-charge assumptions and representing fast charging drive curtailment of renewable energy feed-in and required gas power plant flexibility. A detailed representation of fleet charge connection is less important. Peak load can be significantly reduced by 5% and 3% in both scenarios, respectively. Shifted load is very robust across sensitivity analyses while other model results such as curtailment are more sensitive to factors such as underlying data years. Analyzing the importance of increased BEV fleet battery availability for power systems with different weather and electricity demand characteristics should be further scrutinized.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2055 ◽  
Author(s):  
Andrea Stabile ◽  
Michela Longo ◽  
Wahiba Yaïci ◽  
Federica Foiadelli

Electric vehicles (EVs), which have become a fundamental part of the automotive industry, were developed as part of concerted worldwide efforts to reduce dependency on fossil fuels due to their devastating effects on the environment. The aim of this study was to analyse a complete trip using an EV from Toronto to Ottawa (Canada) along Ontario’s Highway 401, considering that use of conventional vehicles powered by petrol or diesel allow one to make this trip without stops; using EVs, it is necessary to recharge the vehicle. For this purpose, an algorithm was developed for optimizing recharging stops during a complete trip. In particular, the simulations analysed the number of stops and specifically where it is possible to recharge taking into account the actual charging stations (CSs) located along the trip and the time of recharge during the stops as a function of the state of charge (SoC) of the vehicle. Using this approach, it was possible to evaluate the suitable coverage of the CSs on the stretch considered as well as to assess the main parameters that influence performance on the route.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1093 ◽  
Author(s):  
Niklas Wulff ◽  
Felix Steck ◽  
Hans Christian Gils ◽  
Carsten Hoyer-Klick ◽  
Bent van den Adel ◽  
...  

Battery electric vehicles (BEV) provide an opportunity to balance supply and demand in future power systems with high shares of fluctuating renewable energy. Compared to other storage systems such as pumped-storage hydroelectricity, electric vehicle energy demand is highly dependent on charging and connection choices of vehicle users. We present a model framework of a utility-based stock and flow model, a utility-based microsimulation of charging decisions, and an energy system model including respective interfaces to assess how the representation of battery electric vehicle charging affects energy system optimization results. We then apply the framework to a scenario study for controlled charging of nine million electric vehicles in Germany in 2030. Assuming a respective fleet power demand of 27 TWh, we analyze the difference between power-system-based and vehicle user-based charging decisions in two respective scenarios. Our results show that taking into account vehicle users’ charging and connection decisions significantly decreases the load shifting potential of controlled charging. The analysis of marginal values of equations and variables of the optimization problem yields valuable insights on the importance of specific constraints and optimization variables. Assumptions on fleet battery availability and a detailed representation of fast charging are found to have a strong impact on wind curtailment, renewable energy feed-in, and required gas power plant flexibility. A representation of fleet connection to the grid in high temporal detail is less important. Peak load can be reduced by 5% and 3% in both scenarios, respectively. Shifted load is robust across sensitivity analyses while other model results such as curtailment are more sensitive to factors such as underlying data years. Analyzing the importance of increased BEV fleet battery availability for power systems with different weather and electricity demand characteristics should be further scrutinized.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1648-1651
Author(s):  
Zong Feng Li ◽  
Chun Lin Guo

As a promising transport in the future, electric vehicles plays an important role in people's lives and energy conservation. In recent years, the rapid development of electric vehicles, inevitably causes the overload problems to the original grid. This paper presents a transformer load models with the consideration of electric vehicle charging load. We analyze the transformer overload problem by the results obtained by simulation of the model.


2020 ◽  
Vol 258 ◽  
pp. 114101 ◽  
Author(s):  
Philip Sterchele ◽  
Konstantin Kersten ◽  
Andreas Palzer ◽  
Jan Hentschel ◽  
Hans-Martin Henning

2021 ◽  
Vol 6 (4) ◽  
pp. 61
Author(s):  
Yiwei Lu

<p><span lang="EN-US">Due to the impact of global warming, diesel locomotives that use fossil energy as fuel are gradually being replaced by electric vehicles. At present, many countries at home and abroad are actively promoting the development of the electric vehicle industry in response to the call of the Paris Agreement. However, electric vehicles have a maximum mileage limit, so the reasonable layout of electric vehicle charging stations is also a problem to be solved today. In this article, the author analyzes the research background of the electric vehicle routing problem. After introducing several new research directions in the current electric vehicle routing problem, we propose an optimization algorithm for solving those types of problem. It brings certain theoretical significance for future generations to solve the problem of electric vehicle routing in real life.</span></p>


Sign in / Sign up

Export Citation Format

Share Document