scholarly journals Advanced Computational Fluid Dynamics Study of the Dissolved Oxygen Concentration within a Thin-Layer Cascade Reactor for Microalgae Cultivation

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7284
Author(s):  
Karel Petera ◽  
Štěpán Papáček ◽  
Cristian Inostroza González ◽  
José María Fernández-Sevilla ◽  
Francisco Gabriel Acién Fernández

High concentration of dissolved oxygen within microalgae cultures reduces the performance of corresponding microalgae cultivation system (MCS). The main aim of this study is to provide a reliable computational fluid dynamics (CFD)-based methodology enabling to simulate two relevant phenomena governing the distribution of dissolved oxygen within MCS: (i) mass transfer through the liquid–air interface and (ii) oxygen evolution due to microalgae photosynthesis including the inhibition by the same dissolved oxygen. On an open thin-layer cascade (TLC) reactor, a benchmark numerical study to assess the oxygen distribution was conducted. While the mass transfer phenomenon is embedded within CFD code ANSYS Fluent, the oxygen evolution rate has to be implemented via user-defined function (UDF). To validate our methodology, experimental data for dissolved oxygen distribution within the 80 meter long open thin-layer cascade reactor are compared against numerical results. Moreover, the consistency of numerical results with theoretical expectations has been shown on the newly derived differential equation describing the balance of dissolved oxygen along the longitudinal direction of TLC. We argue that employing our methodology, the dissolved oxygen distribution within any MCS can be reliably determined in silico, and eventually optimized or/and controlled.

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Meinhard T. Schobeiri ◽  
S. Abdelfattah ◽  
H. Chibli

Despite the tremendous progress over the past three decades in the area of turbomachinery computational fluid dynamics, there are still substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. These differences are integrally noticeable in terms of major discrepancies in aerodynamic losses, efficiency, and performance of the turbomachines. As a consequence, engine manufacturers are compelled to frequently calibrate their simulation package by performing a series of experiments before issuing efficiency and performance guaranty. This paper aims at identifying the quantities, whose simulation inaccuracies are preeminently responsible for the aforementioned differences. This task requires (a) a meticulous experimental investigation of all individual thermofluid quantities and their interactions, resulting in an integral behavior of the turbomachine in terms of efficiency and performance; (b) a detailed numerical investigation using appropriate grid densities based on simulation sensitivity; and (c) steady and transient simulations to ensure their impact on the final numerical results. To perform the above experimental and numerical tasks, a two-stage, high-pressure axial turbine rotor has been designed and inserted into the TPFL turbine research facility for generating benchmark data to compare with the numerical results. Detailed interstage radial and circumferential traversing presents a complete flow picture of the second stage. Performance measurements were carried out for design and off-design rotational speed. For comparison with numerical simulations, the turbine was numerically modeled using a commercial code. An extensive mesh sensitivity study was performed to achieve a grid-independent accuracy for both steady and transient analysis.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Rim Farjallah ◽  
Monia Chaabane ◽  
Hatem Mhiri ◽  
Philippe Bournot ◽  
Hatem Dhaouadi

In this paper, we propose a numerical study of a tubular solar collector with a U-tube. A three-dimensional numerical model is developed. It was first used in order to study the efficiency of the solar collector and to evaluate the validity of the developed computational fluid dynamics (CFD) model by comparison with experimental results from the literature. For the numerical simulations, the turbulence and the radiation were, respectively, modeled using the standard k–ε model and the discrete ordinates (DO) model. This numerical model was then used to carry out a parametrical study and to discuss the effect of selected operating parameters such as the fluid mass flow rate, the absorber selectivity, and the material properties. Numerical results show that with the increase of the working fluid flow rate from 0.001 kg/s to 0.003 kg/s, the efficiency of the solar collector is improved (from 30% to 35%). Numerical results also show that the filled-type evacuated tube with graphite presents a best result in comparison with those found using the copper fin tube (η increases from 54% to 64%). Finally, we noted that the use of a high selective absorber surface adds to better performance in comparison with the black absorber tube. This is mainly due to the radiation losses reduction.


2015 ◽  
Vol 136 ◽  
pp. 25-38 ◽  
Author(s):  
Fernando Rojano ◽  
Pierre-Emmanuel Bournet ◽  
Melynda Hassouna ◽  
Paul Robin ◽  
Murat Kacira ◽  
...  

2020 ◽  
Vol 25 ◽  
pp. 114-132 ◽  
Author(s):  
V.A. Agra Brandão ◽  
R. Araújo de Queiroz ◽  
R. Lima Dantas ◽  
G. Santos de Lima ◽  
N. Lima Tresena ◽  
...  

Freezing is one the most efficient methods for conservation, especially, fruits and vegetables. Cashew is a fruit with high nutritional value and great economic importance in the Northeast region of Brazil, however, due to high moisture content, it is highly perishable. The numerical study of the freezing process is of great importance for the optimization of the process. In this sense, the objective of this work was to study the cooling and freezing processes of cashew apple using computational fluid dynamics technique. Experiments of cooling and freezing of the fruit, with the aid of a refrigerator,data acquisition system and thermocouples, and simulation using Ansys CFX® software for obtain the cooling and freezing kinetics of the product were realized. Results of the cooling and freezing kinetics of the cashew apple and temperature distribution inside the cashew apple are presented, compared and analyzed. The model was able to predict temperaturetransient behavior with good accuracy, except in the post-freezing period.


Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118839
Author(s):  
Shiliang Yang ◽  
Ruihan Dong ◽  
Yanxiang Du ◽  
Shuai Wang ◽  
Hua Wang

Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


1992 ◽  
Vol 114 (1) ◽  
pp. 104-110 ◽  
Author(s):  
J. L. Krazinski ◽  
S. P. Vanka ◽  
J. A. Pearce ◽  
W. M. Roquemore

This paper describes the development of a model for predicting the thermal decomposition rates of aviation fuels. A thermal deposition model was incorporated into FLANELS-2D, an existing computational fluid dynamics (CFD) code that solves the Reynolds-averaged conservation equations of mass, momentum, and energy. The decomposition chemistry is modeled by three global Arrhenius expressions in which the fuel decomposition was assumed to be due to an autoxidation reaction with dissolved oxygen. The deposition process was modeled by assuming that all deposit-forming species transported to the wall adhered and formed a deposit. Calibration of the model required the determination of the following parameters for a given fuel: (1) the pre-exponential constant and activation energy for the wall reaction, (2) the pre-exponential constant and activation energy for the bulk autoxidation reaction, and (3) the pre-exponential constant and activation energy for the precursor decomposition reaction. Values for these parameters were estimated using experimental data from published heated-tube experiments. Results show that the FLANELS-2D code performed well in estimating the fuel temperatures and that the three-equation chemistry model performed reasonably well in accounting for both the rate of deposition and the amount of dissolved oxygen present in the fuel at the end of the heated tube.


Sign in / Sign up

Export Citation Format

Share Document