scholarly journals Inverse Optimal Control Using Metaheuristics of Hydropower Plant Model via Forecasting Based on the Feature Engineering

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7356
Author(s):  
Marlene A. Perez-Villalpando ◽  
Kelly J. Gurubel Tun ◽  
Carlos A. Arellano-Muro ◽  
Fernando Fausto

Optimal operation of hydropower plants (HP) is a crucial task for the control of several variables involved in the power generation process, including hydraulic level and power generation rate. In general, there are three main problems that an optimal operation approach must address: (i) maintaining a hydraulic head level which satisfies the energy demand at a given time, (ii) regulating operation to match with certain established conditions, even in the presence of system’s parametric variations, and (iii) managing external disturbances at the system’s input. To address these problems, in this paper we propose an approach for optimal hydraulic level tracking based on an Inverse Optimal Controller (IOC), devised with the purpose of regulating power generation rates on a specific HP infrastructure. The Closed–Loop System (CLS) has been simulated using data collected from the HP through a whole year of operation as a tracking reference. Furthermore, to combat parametric variations, an accumulative action is incorporated into the control scheme. In addition, a Recurrent Neural Network (RNN) based on Feature Engineering (FE) techniques has been implemented to aid the system in the prediction and management of external perturbations. Besides, a landslide is simulated, causing the system’s response to show a deviation in reference tracking, which is corrected through the control action. Afterward, the RNN is including of the aforementioned system, where the trajectories tracking deviation is not perceptible, at the hand of, a better response with respect to use a single scheme. The results show the robustness of the proposed control scheme despite climatic variations and landslides in the reservoir operation process. This proposed combined scheme shows good performance in presence of parametric variations and external perturbations.

Author(s):  
A. Valente ◽  
D. Iribarren ◽  
J. Dufour ◽  
G. Spazzafumo

The suitability of hydrogen as an energy management solution in a run-of-river hydropower plant inCentral Italyis evaluated from a life-cycle perspective. Hydrogen production at off-peak hours via electrolysis is considered, as well as potential hydrogen storage in metal hydrides followed by hydrogen use at peak hours for power generation using fuel cell technology. Hydropower generation and hydrogen production are identified as the subsystems contributing most to the nine evaluated impact categories (e.g., global warming, abiotic depletion and cumulative energy demand). The renewable hydrogen produced shows a more favourable life-cycle environmental and energy performance than conventional hydrogen generated via steam methane reforming. Furthermore, when enlarging the system with hydrogen use for power generation, the renewable electricity product shows a better life-cycle profile than conventional electricity for the Italian electrical grid. Overall, under life-cycle aspects, hydrogen is found to be a suitable energy solution in hydropower plants both as a hydrogen product itself (e.g., for transportation) and as a feedstock for subsequent power generation at peak hours.


Author(s):  
Mohammad Airaj Firdaws Sadiq ◽  
Najib Rahman Sabory ◽  
Mir Sayed Shah Danish ◽  
Tomonobu Senjyu

Afghanistan hosts the Hindu Kush, an extension of the Himalaya mountains that act as water sources for five major rivers flowing through Afghanistan. Most of these rivers provide promise for the construction of water dams and installment of micro hydropower plants (MHP). Although civil war and political strife continue to threaten the country for more than four decades, the Afghan government introduced strategic plans for the development of the country. In 2016 Afghanistan introduced the Afghanistan National Peace and Development (ANPD) Framework at Brussels de-signed to support Afghanistan’s progress towards achieving the SDGs (Sustainable Development Goals). This study discussed the 7th Goal (ensuring access to affordable, reliable, and sustainable energy for all) and 8th Goal (promoting sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all) alignment in Afghanistan. The Afghan gov-ernment acknowledges its responsibility to provide electricity for all of its citizens, but this can only be achieved if the government can secure a reliable source of energy. Afghanistan’s mountainous terrain provides a challenge to build a central energy distribution system. Therefore this study looks for alternative solutions to the energy problems in Afghanistan and explores feasibility of micro-hydropower plant installations in remote areas. This study evaluated socio-economic im-pacts of micro-hydropower plants in the life of average residents. We focused on one example of a micro hydropower plant located in Parwan, conducted interviews with local residents, and gath-ered on-site data. The findings in this study can help policymakers to analyze the effects of devel-opment projects in the social and economic life of residents. It will encourage the government and hopefully the private sector to invest in decentralized energy options, while the country is facing an ever-growing energy demand.


2015 ◽  
Vol 792 ◽  
pp. 446-450 ◽  
Author(s):  
Yuri Sekretarev ◽  
Sherkhon Sultonov ◽  
Victor Shalnev

The paper is aimed to determine runoff limits of the Vakhsh cascade hydropower plant, which are the main parameters when setting optimum modes of the hydropower plant. It is proposed to increase power generation of the hydropower plant of the Vakhsh cascade by assigning the optimal modes of operation of hydropower plants. The peculiarities of managing the cascades of hydropower plants are described. The description of the Vakhsh cascade hydropower plant and the method of controlling the reservoir of the cascade of the hydropower plants are given.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 220
Author(s):  
Hongxue Zhang ◽  
Lianpeng Zhang ◽  
Jianxia Chang ◽  
Yunyun Li ◽  
Ruihao Long ◽  
...  

Hydropower plant operation reorganizes the temporal and spatial distribution of water resources to promote the comprehensive utilization of water resources in the basin. However, a lot of uncertainties were brought to light concerning cascade hydropower plant operation with the introduction of the stochastic process of incoming runoff. Therefore, it is of guiding significance for the practice operation to investigate the stochastic operation of cascade hydropower plants while considering runoff uncertainty. The runoff simulation model was constructed by taking the cascade hydropower plants in the lower reaches of the Lancang River as the research object, and combining their data with the copula joint function and Gibbs method, and a Markov chain was adopted to construct the transfer matrix of runoff between adjacent months. With consideration for the uncertainty of inflow runoff, the stochastic optimal operation model of cascade hydropower plants was constructed and solved by the SDP algorithm. The results showed that 71.12% of the simulated monthly inflow of 5000 groups in the Nuozhadu hydropower plant drop into the reasonable range. Due to the insufficiency of measured runoff, there were too many 0 values in the derived transfer probability, but after the simulated runoff series were introduced, the results significantly improved. Taking the transfer probability matrix of simulated runoff as the input of the stochastic optimal operation model of the cascade hydropower plants, the operation diagram containing the future-period incoming water information was obtained, which could directly provide a reference for the optimal operation of the Nuozhadu hydropower plant. In addition, taking the incoming runoff process in a normal year as the standard, the annual mean power generation based on stochastic dynamic programming was similar to that based on dynamic programming (respectively 305.97 × 108kW⋅h and 306.91 × 108kW⋅h), which proved that the operation diagram constructed in this study was reasonable.


2013 ◽  
Vol 50 (6) ◽  
pp. 3-15 ◽  
Author(s):  
A. Mahnitko ◽  
J. Gerhards ◽  
O. Linkevics ◽  
R. Varfolomejeva ◽  
I. Umbrasko

Abstract The authors estimate the potential for power generation from water resources of small and medium-sized rivers, which are abundant in Latvia. They propose the algorithm for optimal operation of a small-scale hydropower plant (SHPP) at the chosen optimality criterion in view of the plant’s participation in the market. The choice of SHPP optimization algorithm is made based on two mathematical programming methods - dynamic and generalized reduced gradient ones. Approbation of the algorithm is illustrated by an example of optimized SHPP operation.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


2021 ◽  
Vol 7 ◽  
pp. 3703-3725
Author(s):  
Mohammad Ehteram ◽  
Fatemeh Barzegari Banadkooki ◽  
Chow Ming Fai ◽  
Mohsen Moslemzadeh ◽  
Michelle Sapitang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1041
Author(s):  
Francisco Javier Sanz-Ronda ◽  
Juan Francisco Fuentes-Pérez ◽  
Ana García-Vega ◽  
Francisco Javier Bravo-Córdoba

Fish need to move upstream and downstream through rivers to complete their life cycles. Despite the fact that fishways are the most commonly applied solution to recover longitudinal connectivity, they are not considered viable for downstream migration. Therefore, alternative facilities are recommended to facilitate downstream migration. However, a few recent studies have disagreed with this general assumption, showing the potential for bidirectional movements. This study advances our understanding of the potential of fishways for downstream migration by studying their efficiency in a run-of-the-river hydropower plant in the Duero River (Spain). To achieve this, downstream movements of the Iberian barbel (n = 299) were monitored in a stepped fishway for two years with passive integrated transponder (PIT)-tag technology, considering the effect of fish origin and release zone. The results showed that 24.9% of barbels descended through the fishway, with the origin and release zone affecting the fishway location. In addition, downstream movements were observed throughout the whole year, except in winter. The study concludes that, under specific scenarios, fishways could act as safe alternative routes for downstream migration.


Sign in / Sign up

Export Citation Format

Share Document