scholarly journals Equivalent Modeling of Microgrids Based on Optimized Broad Learning System

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7911
Author(s):  
Lin Wang ◽  
Anke Xue

The DC microgrid is an important structure of microgrids. Aiming at the problem of the grid-connected DC microgrid modeling, a grid-connected DC microgrid equivalent modeling method based on the optimized Broad Learning System (BLS) is proposed. Taking the electrical parameter data of the grid-connected DC microgrid access point as the training data set of BLS, the equivalent model of the grid-connected equivalent model is constructed. In order to further improve the accuracy and generalization performance of the model, the shark smell optimization (SSO) algorithm is used to optimize the input weights and thresholds of the BLS. Furthermore, the shark smell optimization-Broad Learning System (SSO-BLS) algorithm is proposed. SSO-BLS is compared with RBF, BLS, BFO-ELM, and other algorithms. The results show that the grid-connected DC microgrid model based on SSO-BLS has good accuracy and generalization characteristics.

Heart ◽  
2018 ◽  
Vol 104 (23) ◽  
pp. 1921-1928 ◽  
Author(s):  
Ming-Zher Poh ◽  
Yukkee Cheung Poh ◽  
Pak-Hei Chan ◽  
Chun-Ka Wong ◽  
Louise Pun ◽  
...  

ObjectiveTo evaluate the diagnostic performance of a deep learning system for automated detection of atrial fibrillation (AF) in photoplethysmographic (PPG) pulse waveforms.MethodsWe trained a deep convolutional neural network (DCNN) to detect AF in 17 s PPG waveforms using a training data set of 149 048 PPG waveforms constructed from several publicly available PPG databases. The DCNN was validated using an independent test data set of 3039 smartphone-acquired PPG waveforms from adults at high risk of AF at a general outpatient clinic against ECG tracings reviewed by two cardiologists. Six established AF detectors based on handcrafted features were evaluated on the same test data set for performance comparison.ResultsIn the validation data set (3039 PPG waveforms) consisting of three sequential PPG waveforms from 1013 participants (mean (SD) age, 68.4 (12.2) years; 46.8% men), the prevalence of AF was 2.8%. The area under the receiver operating characteristic curve (AUC) of the DCNN for AF detection was 0.997 (95% CI 0.996 to 0.999) and was significantly higher than all the other AF detectors (AUC range: 0.924–0.985). The sensitivity of the DCNN was 95.2% (95% CI 88.3% to 98.7%), specificity was 99.0% (95% CI 98.6% to 99.3%), positive predictive value (PPV) was 72.7% (95% CI 65.1% to 79.3%) and negative predictive value (NPV) was 99.9% (95% CI 99.7% to 100%) using a single 17 s PPG waveform. Using the three sequential PPG waveforms in combination (<1 min in total), the sensitivity was 100.0% (95% CI 87.7% to 100%), specificity was 99.6% (95% CI 99.0% to 99.9%), PPV was 87.5% (95% CI 72.5% to 94.9%) and NPV was 100% (95% CI 99.4% to 100%).ConclusionsIn this evaluation of PPG waveforms from adults screened for AF in a real-world primary care setting, the DCNN had high sensitivity, specificity, PPV and NPV for detecting AF, outperforming other state-of-the-art methods based on handcrafted features.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1134
Author(s):  
Torben Möller ◽  
Tim W. Nattkemper

In recent years, an increasing number of cabled Fixed Underwater Observatories (FUOs) have been deployed, many of them equipped with digital cameras recording high-resolution digital image time series for a given period. The manual extraction of quantitative information from these data regarding resident species is necessary to link the image time series information to data from other sensors but requires computational support to overcome the bottleneck problem in manual analysis. As a priori knowledge about the objects of interest in the images is almost never available, computational methods are required that are not dependent on the posterior availability of a large training data set of annotated images. In this paper, we propose a new strategy for collecting and using training data for machine learning-based observatory image interpretation much more efficiently. The method combines the training efficiency of a special active learning procedure with the advantages of deep learning feature representations. The method is tested on two highly disparate data sets. In our experiments, we can show that the proposed method ALMI achieves on one data set a classification accuracy A > 90% with less than N = 258 data samples and A > 80% after N = 150 iterations, i.e., training samples, on the other data set outperforming the reference method regarding accuracy and training data required.


2021 ◽  
pp. 1-4
Author(s):  
Gusheng Tang ◽  
Xinyan Fu ◽  
Zhen Wang ◽  
Mingyi Chen

Morphological analysis of the bone marrow is an essential step in the diagnosis of hematological disease. The conventional analysis of bone marrow smears is performed under a manual microscope, which is labor-intensive and subject to interobserver variability. The morphological differential diagnosis of abnormal lymphocytes from normal lymphocytes is still challenging. The digital pathology methods integrated with advances in machine learning enable new diagnostic features/algorithms from digital bone marrow cell images in order to optimize classification, thus providing a robust and faster screening diagnostic tool. We have developed a machine learning system, Morphogo, based on algorithms to discriminate abnormal lymphocytes from normal lymphocytes using digital imaging analysis. We retrospectively reviewed 347 cases of bone marrow digital images. Among them, 53 cases had a clinical history and the diagnosis of marrow involvement with lymphoma was confirmed either by morphology or flow cytometry. We split the 53 cases into two groups for training and testing with 43 and 10 cases, respectively. The selected 15,353 cell images were reviewed by pathologists, based on morphological visual appearance, from 43 patients whose diagnosis was confirmed by complementary tests. To expand the range and the precision of recognizing the lymphoid cells in the marrow by automated digital microscopy systems, we developed an algorithm that incorporated color and texture in addition to geometrical cytological features of the variable lymphocyte images which were applied as the training data set. The selected images from the 10 patients were analyzed by the trained artificial intelligence-based recognition system and compared with the final diagnosis rendered by pathologists. The positive predictive value for the identification of the categories of reactive/normal lymphocytes and abnormal lymphoid cells was 99.04%. It seems likely that further training and improvement of the algorithms will facilitate further subclassification of specific lineage subset pathology, e.g., diffuse large B-cell lymphoma from chronic lymphocytic leukemia/small lymphocytic lymphoma, follicular lymphoma, mantle cell lymphoma or even hairy cell leukemia in cases of abnormal malignant lymphocyte classes in the future. This research demonstrated the feasibility of digital pathology and emerging machine learning approaches to automatically diagnose lymphoma cells in the bone marrow based on cytological-histological analyses.


2021 ◽  
Vol 12 (4) ◽  
pp. 85-95
Author(s):  
Yaroslav Voznyi ◽  
Mariia Nazarkevych ◽  
Volodymyr Hrytsyk ◽  
Nataliia Lotoshynska ◽  
Bohdana Havrysh

The method of biometric identification, designed to ensure the protection of confidential information, is considered. The method of classification of biometric prints by means of machine learning is offered. One of the variants of the solution of the problem of identification of biometric images on the basis of the k-means algorithm is given. Marked data samples were created for learning and testing processes. Biometric fingerprint data were used to establish identity. A new fingerprint scan that belongs to a particular person is compared to the data stored for that person. If the measurements match, the statement that the person has been identified is true. Experimental results indicate that the k-means method is a promising approach to the classification of fingerprints. The development of biometrics leads to the creation of security systems with a better degree of recognition and with fewer errors than the security system on traditional media. Machine learning was performed using a number of samples from a known biometric database, and verification / testing was performed with samples from the same database that were not included in the training data set. Biometric fingerprint data based on the freely available NIST Special Database 302 were used to establish identity, and the learning outcomes were shown. A new fingerprint scan that belongs to a particular person is compared to the data stored for that person. If the measurements match, the statement that the person has been identified is true. The machine learning system is built on a modular basis, by forming combinations of individual modules scikit-learn library in a python environment.


2021 ◽  
Vol 16 ◽  
pp. 155892502110379
Author(s):  
Hao Jiang ◽  
Jiuxiang Song ◽  
Baowei Zhang ◽  
Suna Zhao ◽  
Yonghua Wang

With the continuous development of deep learning, due to the complexity of the deep neural network structure and the limitation of training time, some scholars have proposed broad learning, the Broad Learning System (BLS). However, BLS currently only verifies that it has excellent effects on some of the network training data sets, and it does not necessarily have excellent effects on some actual data sets. In response to this, this paper uses the effect of BLS in predicting the unevenness of yarn quality in the yarn data set, and proposes a BLS-based multi-layer neural network (MNN) for the problems, which is called Broad Multilayer Neural Network (BMNN).


2021 ◽  
Vol 25 (4) ◽  
pp. 879-906
Author(s):  
Ekaterina Merkurjev

Multiclass data classification, where the goal is to segment data into classes, is an important task in machine learning. However, the task is challenging due to reasons including the scarcity of labeled training data; in fact, most machine learning algorithms require a large amount of labeled examples to perform well. Moreover, the accuracy of a classifier can be dependent on the accuracy of the training labels which can be corrupted. In this paper, we present an efficient and unconditionally stable semi-supervised graph-based method for multiclass data classification which requires considerably less labeled training data to accurately classify a data set compared to current techniques, due to properties such as the embedding of data into a similarity graph. In particular, it performs very well and more accurately than current approaches in the common scenario of few labeled training elements. Morever, we show that the algorithm performs with good accuracy even with a large number of mislabeled examples and is also able to incorporate class size information. The proposed method uses a modified auction dynamics technique. Extensive experiments on benchmark datasets are performed and the results are compared to other methods.


2019 ◽  
Vol 12 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Wael Farag

Background: In this paper, a Convolutional Neural Network (CNN) to learn safe driving behavior and smooth steering manoeuvring, is proposed as an empowerment of autonomous driving technologies. The training data is collected from a front-facing camera and the steering commands issued by an experienced driver driving in traffic as well as urban roads. Methods: This data is then used to train the proposed CNN to facilitate what it is called “Behavioral Cloning”. The proposed Behavior Cloning CNN is named as “BCNet”, and its deep seventeen-layer architecture has been selected after extensive trials. The BCNet got trained using Adam’s optimization algorithm as a variant of the Stochastic Gradient Descent (SGD) technique. Results: The paper goes through the development and training process in details and shows the image processing pipeline harnessed in the development. Conclusion: The proposed approach proved successful in cloning the driving behavior embedded in the training data set after extensive simulations.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoya Shiode ◽  
Mototaka Kabashima ◽  
Yuta Hiasa ◽  
Kunihiro Oka ◽  
Tsuyoshi Murase ◽  
...  

AbstractThe purpose of the study was to develop a deep learning network for estimating and constructing highly accurate 3D bone models directly from actual X-ray images and to verify its accuracy. The data used were 173 computed tomography (CT) images and 105 actual X-ray images of a healthy wrist joint. To compensate for the small size of the dataset, digitally reconstructed radiography (DRR) images generated from CT were used as training data instead of actual X-ray images. The DRR-like images were generated from actual X-ray images in the test and adapted to the network, and high-accuracy estimation of a 3D bone model from a small data set was possible. The 3D shape of the radius and ulna were estimated from actual X-ray images with accuracies of 1.05 ± 0.36 and 1.45 ± 0.41 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document