scholarly journals Economic and Environmental Benefits for Electricity Grids from Spatiotemporal Optimization of Electric Vehicle Charging

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8204
Author(s):  
Soomin Woo ◽  
Zhe Fu ◽  
Elpiniki Apostolaki-Iosifidou ◽  
Timothy E. Lipman

This article addresses the problem of estimating the potential economic and environmental gains for utility grids of shifting the electric-vehicle (EV) charging time and location. The current literature on shifting EV charging loads has been limited by real-world data availability and has typically therefore relied on simulated studies. Collaborating with a large automobile company and a major utility grid operator in California, this research used actual EV operational data and grid-operation data including locational marginal prices, marginal-grid-emission-rate data, and renewable-energy-generation ratio information. With assumptions about the future potential availability of EV charging stations, this research estimated the maximum potential gains in the economic and environmental performance of the electrical-grid operation by optimizing the time and location of EV charging. For the problem of rescheduling the charging sessions, the optimization models and objective functions were specifically designed based on the information available to the energy system operators that influence their economic and environmental performance like grid congestion, emissions, and renewable energy. The results present the maximum potential in reducing the operational costs and the marginal emissions and increasing the renewable energy use in the utility grid by rescheduling the EV charging load with respect to its time and location. The analysis showed that the objective functions of minimizing the marginal cost or the marginal emission rate performed the best overall.

Author(s):  
Wei Zhang ◽  
Yifan Dou

Problem definition: We study how the government should design the subsidy policy to promote electric vehicle (EV) adoptions effectively and efficiently when there might be a spatial mismatch between the supply and demand of charging piles. Academic/practical relevance: EV charging infrastructures are often built by third-party service providers (SPs). However, profit-maximizing SPs might prefer to locate the charging piles in the suburbs versus downtown because of lower costs although most EV drivers prefer to charge their EVs downtown given their commuting patterns and the convenience of charging in downtown areas. This conflict of spatial preferences between SPs and EV drivers results in high overall costs for EV charging and weak EV adoptions. Methodology: We use a stylized game-theoretic model and compare three types of subsidy policies: (i) subsidizing EV purchases, (ii) subsidizing SPs based on pile usage, and (iii) subsidizing SPs based on pile numbers. Results: Subsidizing EV purchases is effective in promoting EV adoptions but not in alleviating the spatial mismatch. In contrast, subsidizing SPs can be more effective in addressing the spatial mismatch and promoting EV adoptions, but uniformly subsidizing pile installation can exacerbate the spatial mismatch and backfire. In different situations, each policy can emerge as the best, and the rule to determine which side (SPs versus EV buyers) to subsidize largely depends on cost factors in the charging market rather than the EV price or the environmental benefits. Managerial implications: A “jigsaw-piece rule” is recommended to guide policy design: subsidizing SPs is preferred if charging is too costly or time consuming, and subsidizing EV purchases is preferred if charging is sufficiently fast and easy. Given charging costs that are neither too low nor too high, subsidizing SPs is preferred only if pile building downtown is moderately more expensive than pile building in the suburbs.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3455
Author(s):  
Jean-Michel Clairand ◽  
Carlos Álvarez-Bel ◽  
Javier Rodríguez-García ◽  
Guillermo Escrivá-Escrivá

Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the N P C by 13.58%, but a reduction in the N P C of the EV charging strategy would result in up to 3.12%.


2021 ◽  
Vol 4 (S2) ◽  
Author(s):  
Tayenne Dias de Lima ◽  
John F. Franco ◽  
Fernando Lezama ◽  
João Soares ◽  
Zita Vale

AbstractIn the coming years, several transformations in the transport sector are expected, associated with the increase in electric vehicles (EVs). These changes directly impact electrical distribution systems (EDSs), introducing new challenges in their planning and operation. One way to assist in the desired integration of this technology is to allocate EV charging stations (EVCSs). Efforts have been made towards the development of EVCSs, with the ability to recharge the vehicle at a similar time than conventional vehicle filling stations. Besides, EVs can bring environmental benefits by reducing greenhouse gas emissions. However, depending on the energy matrix of the country in which the EVs fleet circulates, there may be indirect emissions of polluting gases. Therefore, the development of this technology must be combined with the growth of renewable generation. Thus, this proposal aims to develop a mathematical model that includes EVs integration in the distribution system. To this end, a mixed-integer linear programming (MILP) model is proposed to solve the allocation problem of EVCSs including renewable energy sources. The model addresses the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. Moreover, an EV charging forecast method is proposed, subject to the uncertainties related to the driver's behavior, the energy required by these vehicles, and the state of charge of the EVs. The proposed model was implemented in the AMPL modelling language and solved via the commercial solver CPLEX. Tests with a 24-node system allow evaluating the proposed method application.


2021 ◽  
Vol 13 (6) ◽  
pp. 3528
Author(s):  
Phap Vu Minh ◽  
Sang Le Quang ◽  
Manh-Hai Pham

At present, the electric vehicle (EV) market is developing strongly and widely across many countries around the world. Increasing clean energy infrastructure for EVs is a possible solution to reduce greenhouse gas emissions and help improve air quality in urban areas. Electric vehicles charged by electricity from photovoltaic (PV) systems can produce less emissions than conventional EVs charged by the utility grid. Thus, the combination of solar power and EV charging stations is one of the possible methods to achieve sustainable development in the current EV market. EVs in cities in Vietnam have developed very quickly in recent times, but the charging station infrastructure is still very limited, and most existing charging stations use electricity from the utility grid. In this paper, the optimal configuration of PV-powered EV charging stations is analyzed technically and economically under different solar irradiation conditions in Vietnam. The study results show that the optimal configuration and investment efficiency of PV-powered EV charging stations in each urban area are greatly affected by the solar irradiation value and feed-in tariff (FIT) price of rooftop solar power. In Vietnam, a region with high solar irradiation, such as Ho Chi Minh, is more likely to invest in PV-powered EV charging stations than other areas with lower solar irradiation, such as Hanoi.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 558
Author(s):  
K Vijay Kumar ◽  
T Bharath Kumar

Owing to several advantages of Plug-in Electric Vehicles (PEVs) like less noise, emission less, good efficiency and the reduced cost has attention to the governments, researchers and manufactures in recent time. The Plug-in Electric Vehicle (PEV) plays a vital role in    replacement of conventional vehicles in future, because of penetration of renewable energy resources in conventional generation. The modernized of micro grid is happening due to usage of clean energy for EV charging. The cost of electric vehicle charging is challenging issue in the development of plug-in electric vehicle. The coordination between renewable generation and conventional generation is very much needed in near future. The dynamic nature of renewable energy resources causes frequent interrupts in electric vehicle charging. The problem of nonlinear power generation with renewable resources is overcome by electric vehicle battery storage system which   enables the EV battery to charge during low demand period and gets discharged into the micro grid during high demand periods. This paper developed an optimal schedule for stationary Plug-in Electric Vehicle charging in operation with micro grid. The obtained optimal schedule provides balance between active and reactive power in generation and load as well. The integration of renewable energy resources is achieved through solar, wind in Vehicle-2-Grid (V2G) approach which is used to safeguard to renewable energy resources by store additional energy produced during peak load period and feeding back to the micro grid during low load period. As a result the stable operation of the micro grid and EV charging with low cost is achieved in this paper. 


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2765
Author(s):  
Joanna Rakowska ◽  
Irena Ozimek

The deployment of renewable energy at the local level can contribute significantly to mitigating climate change, improving energy security and increasing social, economic and environmental benefits. In many countries local authorities play an important role in the local development, but renewable energy deployment is not an obligatory task for them. Hence there are two research questions: (1) Do local governments think investments in renewable energy (RE) are urgent and affordable within the local budgets? (2) How do they react to the public aid co-financing investments in renewable energy? To provide the answer we performed qualitative analysis and non-parametric tests of data from a survey of 252 local authorities, analysis of 292 strategies of local development and datasets of 1170 renewable energy projects co-financed by EU funds under operational programs 2007–2013 and 2014–2020 in Poland. Findings showed that local authorities’ attitudes were rather careful, caused by financial constraints of local budgets and the scope of obligatory tasks, which made renewable energy investments not the most urgent. Public aid was a factor significantly affecting local authorities’ behavior. It triggered local authorities’ renewable energy initiatives, increasing the number and scope of renewable energy investments as well cooperation with other municipalities and local communities. Despite this general trend, there were also considerable regional differences in local authorities’ renewable energy behavior.


Sign in / Sign up

Export Citation Format

Share Document