scholarly journals Generation of Realistic Boundary Conditions at the Combustion Chamber/Turbine Interface Using Large-Eddy Simulation

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8206
Author(s):  
Benjamin Martin ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier

Numerical simulation of multiple components in turbomachinery applications is very CPU-demanding but remains necessary in the majority of cases to capture the proper coupling and a reliable flow prediction. During a design phase, the cost of simulation is, however, an important criterion which often defines the numerical methods to be used. In this context, the use of realistic boundary conditions capable of accurately reproducing the coupling between components is of great interest. With this in mind, this paper presents a method able to generate more realistic boundary conditions for isolated turbine large-eddy simulation (LES) while exploiting an available integrated combustion chamber/turbine LES. The unsteady boundary conditions to be used at the inflow of the isolated turbine LES are built from the modal decomposition of the database recorded at the interface between the two components of the integrated LES simulation. Given the reference LES database, the reconstructed field boundary conditions can then be compared to standard boundary conditions in the case of isolated turbine configuration flow predictions to illustrate the impact. The results demonstrate the capacity of this type of conditions to reproduce the coupling between the combustion chamber and the turbine when standard conditions cannot. The aerothermal predictions of the blade are, in particular, very satisfactory, which constitutes an important criterion for the adoption of such a method during a design phase.

Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Benjamin Martin ◽  
...  

Unsteady simulations of various components of a gas-turbine engine are often carried out independently and only share averaged quantities at the component interfaces. In order to study the impact and interactions between components, this work compares results from sectoral stand-alone simulations of a fan, compressor and annular combustion chamber of the DGEN-380 demonstrator engine at take-off conditions against an integrated 360 azimuthal degrees large-eddy simulation with over 2.1 billion cells of all previously listed components. Note that, at take-off conditions the compressor works at transonic conditions and generates an upstream-propagating shock that interacts with the fan modifying the shape of its wake with respect to the stand-alone simulation. Furthermore, the shock is seen as a tone in the pressure spectra at half the impeller blade passing frequency in the forward region of the engine. In the aft region, time-averaged fields are overall similar between stand-alone and integrated simulations but show a deviation in the azimuthal position of the hot-spot at the exit of the combustion chamber due to the addition of the diffuser. Pressure fluctuations generated in the compressor are captured in the combustion chamber as tones in the temperature and pressure spectra at the impeller blade-passing frequency and harmonics as well as an increase in the root-mean-square pressure.


Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Benjamin Martin ◽  
...  

Optimising the design of aviation propulsion systems using computational fluid dynamics is essential to increase their efficiency and reduce pollutant as well as noise emissions. Nowadays, and within this optimisation and design phase, it is possible to perform meaningful unsteady computations of the various components of a gas-turbine engine. However, these simulations are often carried out independently of each other and only share averaged quantities at the interfaces minimising the impact and interactions between components. In contrast to the current state-of-the-art, this work presents a 360 azimuthal degrees large-eddy simulation with over 2100 million cells of the DGEN-380 demonstrator engine enclosing a fully integrated fan, compressor and annular combustion chamber at take-off conditions as a first step towards a high-fidelity simulation of the full engine. In order to carry such a challenging simulation and reduce the computational cost, the initial solution is interpolated from stand-alone sectoral simulations of each component. In terms of approach, the integrated mesh is generated in several steps to solve potential machine dependent memory limitations. It is then observed that the 360 degrees computation converges to an operating point with less than 0.5% difference in zero-dimensional values compared to the stand-alone simulations yielding an overall performance within 1% of the designed thermodynamic cycle. With the presented methodology, convergence and azimuthally decorrelated results are achieved for the integrated simulation after only 6 fan revolutions.


Author(s):  
Florent Duchaine ◽  
Jérôme Dombard ◽  
Laurent Gicquel ◽  
Charlie Koupper

To study the effects of combustion chamber dynamics on a turbine stage aerodynamics and thermal loads, an integrated Large-Eddy Simulation of the FACTOR combustion chamber simulator along with its high pressure turbine stage is performed and compared to a standalone turbine stage computation operated under the same mean conditions. For this specific configuration, results illustrate that the aerodynamic expansion of the turbine stage is almost insensitive to the inlet turbulent conditions. However, the temperature distribution in the turbine passages as well as on the stator vane and rotor blade walls are highly impacted by these inlet conditions: underlying the importance of inlet conditions in turbine stage computations and the potential of integrated combustion chamber / turbine simulations in such a context.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Puxuan Li ◽  
Steve J. Eckels ◽  
Garrett W. Mann ◽  
Ning Zhang

The setup of inlet conditions for a large eddy simulation (LES) is a complex and important problem. Normally, there are two methods to generate the inlet conditions for LES, i.e., synthesized turbulence methods and precursor simulation methods. This study presents a new method for determining inlet boundary conditions of LES using particle image velocimetry (PIV). LES shows sensitivity to inlet boundary conditions in the developing region, and this effect can even extend into the fully developed region of the flow. Two kinds of boundary conditions generated from PIV data, i.e., steady spatial distributed inlet (SSDI) and unsteady spatial distributed inlet (USDI), are studied. PIV provides valuable field measurement, but special care is needed to estimate turbulent kinetic energy and turbulent dissipation rate for SSDI. Correlation coefficients are used to analyze the autocorrelation of the PIV data. Different boundary conditions have different influences on LES, and their advantages and disadvantages for turbulence prediction and static pressure prediction are discussed in the paper. Two kinds of LES with different subgrid turbulence models are evaluated: namely dynamic Smagorinsky–Lilly model (Lilly model) and wall modeled large eddy simulation (WMLES model). The performances of these models for flow prediction in a square duct are presented. Furthermore, the LES results are compared with PIV measurement results and Reynolds-stress model (RSM) results at a downstream location for validation.


Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier ◽  
...  

Abstract The design optimization of aviation propulsion systems by means of computational fluid dynamics is key to increase their efficiency and reduce pollutant and noise emissions. The recurrent increase in available computing power allows nowadays to perform unsteady high-fidelity computations of the different components of a gas turbine. However, these simulations are often made independently of each other and they only share average quantities at interfaces. In this work, the methodology and first results for a sectoral large-eddy simulation of an integrated high-pressure compressor and combustion chamber of a typical turbine engine architecture is proposed. In the simulation, the compressor is composed of one main blade and one splitter blade, two radial diffuser vanes and six axial diffuser vanes. The combustion chamber is composed of the contouring casing, the flame-tube and a T-shaped vaporizer. This integrated computation considers a good trade-off between accuracy of the simulation and affordable CPU cost. Results are compared between the stand-alone combustion chamber simulation and the integrated one in terms of global, integral and average quantities. It is shown that pressure perturbations generated by the interaction of the impeller blades with the diffuser vanes are propagated through the axial diffuser and enter the combustion chamber through the dilution holes and the vaporizer. Due to the high amplitude of the pressure perturbations, several variables are perturbed at the blade-passing frequency and multiples. This is also reflected on combustion where two broadband peaks appear for the global heat release.


2001 ◽  
Vol 446 ◽  
pp. 309-320 ◽  
Author(s):  
IVAN MARUSIC ◽  
GARY J. KUNKEL ◽  
FERNANDO PORTÉ-AGEL

An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at Rθ = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wall-normal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and X-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with ‘outer-flow’ scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document