scholarly journals Blockchain-Enabled Energy Demand Side Management Cap and Trade Model

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8600
Author(s):  
Alain Aoun ◽  
Hussein Ibrahim ◽  
Mazen Ghandour ◽  
Adrian Ilinca

Global economic growth, demographic explosion, digitization, increased mobility, and greater demand for heating and cooling due to climate change in different world areas are the main drivers for the surge in energy demand. The increase in energy demand is the basis of economic challenges for power companies alongside several socio-economic problems in communities, such as energy poverty, defined as the insufficient coverage of energy needs, especially in the residential sector. Two main strategies are considered to meet this increased demand. The first strategy focuses on new sustainable and eco-friendly modes of power generation, such as renewable energy resources and distributed energy resources. The second strategy is demand-side oriented rather than the supply side. Demand-side management, demand response (DR), and energy efficiency (EE) programs fall under this category. On the other hand, the decentralization and digitization of the energy sector convoyed by the emersion of new technologies such as blockchain, Internet of Things (IoT), and Artificial Intelligence (AI), opened the door to new solutions for the energy demand dilemma. Among these technologies, blockchain has proved itself as a decentralized trading platform between untrusted peers without the involvement of a trusted third party. This newly introduced Peer-to-Peer (P2P) trading model can be used to create a new demand load control model. In this article, the concept of an energy cap and trade demand-side management (DSM) model is introduced and simulated. The introduced DSM model is based on the concept of capping consumers’ monthly energy consumption and rewarding consumers who do not exceed this cap with energy tradeable credits that can be traded using blockchain-based Peer-to-Peer (P2P) energy trading. A model based on 200 households is used to simulate the proposed DSM model and prove that this model can be beneficial to both energy companies and consumers.

Author(s):  
Souhil Mouassa ◽  
Marcos Tostado-Véliz ◽  
Francisco Jurado

Abstract With emergence of automated environments, energy demand increased with unexpected ratio, especially total electricity consumed in the residential sector. This unexpected increase in demand in energy brings a challenging task of maintaining the balance between supply and demand. In this work, a robust artificial ecosystem-inspired optimizer based on demand-side management is proposed to provide the optimal scheduling pattern of smart homes. More precisely, the main objectives of the developed framework are: i) Shifting load from on-peak hours to off-peak hours while fulfilling the consumer intends to reduce electricity-bills. ii) Protect users comfort by improving the appliances waiting time. Artificial ecosystem optimizer (AEO) algorithm is a novel optimization technique inspired by the energy flocking between all living organisms in the ecosystem on earth. Demand side management (DSM) program is modeled as an optimization problem with constraints of starting and ending of appliances. The proposed optimization technique based DSM program is evaluated on two different pricing schemes with considering two operational time intervals (OTI). Extensive simulation cases are carried out to validate the effectiveness of the proposed optimizer based energy management scheme. AEO minimizes total electricity-bills while keeping the user comfort by producing optimum appliances scheduling pattern. Simulation results revealed that the proposed AEO achieved a minimization electricity-bill up to 10.95, 10.2% for RTP and 37.05% for CPP for the 12 and 60 min operational time interval (OTI), respectively, in comparison to other results achieved by other optimizers. On the other hand peak to average ratio (PAR) is reduced to 32.9% using RTP and 31.25% using CPP tariff.


2020 ◽  
Vol 281 (2) ◽  
pp. 299-315 ◽  
Author(s):  
Didier Aussel ◽  
Luce Brotcorne ◽  
Sébastien Lepaul ◽  
Léonard von Niederhäusern

2019 ◽  
Vol 103 ◽  
pp. 02005
Author(s):  
Vladimir Klimenko ◽  
Alexei Tereshin ◽  
Olga Mikushina

Biofuels are an important energy source, currently providing about 10% of the world energy demand, including 2% of global electricity generation and the same share of total liquid fuel consumption. Wood fuel in Russia is one of the most affordable and most important type of renewable energy resources. In this paper we study the possible changes in energy potential of Russia's forest resources as a result of changes in the atmosphere and climate. The estimates of the global dioxide concentrations dynamics and mean annual air temperature change over the Russian territory for the period up to 2050 are developed using the MPEI models of the carbon cycle and regional climate. The calculations show that the change of net primary productivity of forests of Russia as a result of the CO2 abundance increase in the atmosphere, as well as of the increase of the air temperature and rainfall will enhance available energy resources of wood fuel by mid-century by more than 9 million tons of coal equivalent (Mtce).


Author(s):  
Eur Ing A J Blokland ◽  
I P Barendregt ◽  
C J C M Posthumus

The Netherlands Ministry of Defence (MoD) has issued an Operational Energy Strategy (OES) with ambition targets for energy independence and improvement of energy efficiency during the life time of naval platforms. A target is given in 2030 of 20 % reduced dependence on fossil fuels and in 2050 of 70 % reduced dependence on fossil fuels, compared to 2010. More stringent environmental emission (NOx, CO2, etc.) requirements are to be expected as a result from IMO and (local) political regulations. In the last decades the power consumption on board of naval platforms increased substantially as well as the complexity of integrated energy systems. Market surveys shows that the evolution of commercial green technologies are promising but have to be demonstrated in the coming years on low power and energy levels. They will not be de-risked in depth or well proven to be successful in time to be selected for the Royal Netherlands Navy (RNLN) new naval projects (2019 – 2025). Furthermore, new technologies as energy resources and carriers (H2, LNG, methanol, power-to-liquid (PTL), etc.) or new system technologies (DC on high voltage level, fuel cell systems, waste energy recovery, etc.) require a new approach for integration aspects like hazard and safety cases and energy efficiency. This is because the energy demand on board of naval platforms in several military operational modes differ from the merchant and off-shore branch. In this paper an approach for an adaptable energy platform is described to design a new naval platform based on nowadays proven technology as fossil fuels that can be transformed during life time that can fulfill the expectations and requirements of the coming decades (non-fossil fuels, zero emission, improved energy efficiency). Aspects as a naval energy index as reference will be discussed as well as an evaluation of new technologies for new naval platform integration design parameters, such as power or energy demands, consequences of energy resources, energy control as well as build in ship construction safety measures.


2021 ◽  
Vol 20 (1) ◽  
pp. 21-33
Author(s):  
Hossam Eldin Hamed Shalaby

Electrical peak load demand all over the world is always anticipated to grow, which is challenging electrical utility to supply such increasing load demand in a cost effective, reliable and sustainable manner. Thus, there is a need to study some of load management (LM) techniques employed to minimize energy consumption, reduce consumers' electricity bills and decrease the greenhouse gas emissions responsible for global warming. This paper presents a review of several recent LM strategies and optimization algorithms in different domains. The review is complemented by tabulating several demand side management (DSM) techniques with a specific view on the used demand response (DR) programs, key finding and benefits gained. A special focus is directed to the communication protocols and wireless technology, incorporation of renewable energy resources (RERs), battery energy storage (BES), home appliances scheduling and power quality applications. The outcome of this review reveals that the real time pricing (RTP) is the most efficient price-based mechanism program (PBP), whilst time of use (TOU) is the basic PBP and easiest to implement. Energy efficiency programs have proved the highest influential impact on the annual energy saving over the other dynamic pricing mechanism programs. Through a forecasted proposal of future study, DSM proved tremendous potential annual energy savings, peak demand savings, and investment cost rates within different consumption sectors progressively up to year 2030.


2019 ◽  
Vol 9 (18) ◽  
pp. 3796 ◽  
Author(s):  
Martin Roesch ◽  
Dennis Bauer ◽  
Leon Haupt ◽  
Robert Keller ◽  
Thomas Bauernhansl ◽  
...  

The growing share of renewable energy generation based on fluctuating wind and solar energy sources is increasingly challenging in terms of power grid stability. Industrial demand-side response presents a promising way to balance energy supply and consumption. For this, energy demand is flexibly adapted based on external incentives. Thus, companies can economically benefit and at the same time contribute to reducing greenhouse gas emissions. However, there are currently some major obstacles that impede industrial companies from taking part in the energy markets. A broad specification analysis systematically dismantles the existing barriers. On this foundation, a new end-to-end ecosystem of an energy synchronization platform is introduced. It consists of a business-individual company-side platform, where suitable services for energy-oriented manufacturing are offered. In addition, one market-side platform is established as a mediating service broker, which connects the companies to, e.g., third party service providers, energy suppliers, aggregators, and energy markets. The ecosystems aim at preventing vendor lock-in and providing a flexible solution, relying on open standards and offering an integrated solution through an end-to-end energy flexibility data model. In this article, the resulting functionalities are discussed and the remaining deficits outlined.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 143 ◽  
Author(s):  
Gerardo J. Osório ◽  
Miadreza Shafie-khah ◽  
Mohamed Lotfi ◽  
Bernardo J. M. Ferreira-Silva ◽  
João P. S. Catalão

The integration of renewable energy resources (RES) (such as wind and photovoltaic (PV)) on large or small scales, in addition to small generation units, and individual producers, has led to a large variation in energy production, adding uncertainty to power systems (PS) due to the inherent stochasticity of natural resources. The implementation of demand-side management (DSM) in distribution grids (DGs), enabled by intelligent electrical devices and advanced communication infrastructures, ensures safer and more economical operation, giving more flexibility to the intelligent smart grid (SG), and consequently reducing pollutant emissions. Consumers play an active and key role in modern SG as small producers, using RES or through participation in demand response (DR) programs. In this work, the proposed DSM model follows a two-stage stochastic approach to deal with uncertainties associated with RES (wind and PV) together with demand response aggregators (DRA). Three types of DR strategies offered to consumers are compared. Nine test cases are modeled, simulated, and compared in order to analyze the effects of the different DR strategies. The purpose of this work is to minimize DG operating costs from the Distribution System Operator (DSO) point-of-view, through the analysis of different levels of DRA presence, DR strategies, and price variations.


2020 ◽  
Vol 110 (04) ◽  
pp. 205-208
Author(s):  
Dominik Flumm ◽  
David Franz ◽  
Maximilian Sporleder ◽  
Lukas Theisinger ◽  
Eberhard Abele

Industrielle Kälte- und Wärmeversorgungssysteme haben mit 75 % einen erheblichen Anteil am Gesamtenergiebedarf der deutschen Industrie. Der zunehmende Anteil erneuerbarer volatiler Energien führt dazu, dass die Energieflexibilität der Anlagen an Bedeutung gewinnt. Mit „Easer“ wird in diesem Beitrag das Konzept eines webbasierten Planungswerkzeugs vorgestellt, das die Energieeffizienz und Energieflexibilität im Sinne eines ganzheitlichen Demand Side Management berücksichtigt.   Industrial refrigeration and heat supply systems account for a substantial 75 % of the total energy demand of German industry. The increasing share of renewable, volatile energies means that the energy flexibility of the plants is gaining in importance. With Easer, this article presents the concept of a web-based planning tool that takes energy efficiency and energy flexibility into account in the sense of holistic demand side management.


Sign in / Sign up

Export Citation Format

Share Document