scholarly journals A Review on Demand Side Management Applications, Techniques, and Potential Energy and Cost saving

2021 ◽  
Vol 20 (1) ◽  
pp. 21-33
Author(s):  
Hossam Eldin Hamed Shalaby

Electrical peak load demand all over the world is always anticipated to grow, which is challenging electrical utility to supply such increasing load demand in a cost effective, reliable and sustainable manner. Thus, there is a need to study some of load management (LM) techniques employed to minimize energy consumption, reduce consumers' electricity bills and decrease the greenhouse gas emissions responsible for global warming. This paper presents a review of several recent LM strategies and optimization algorithms in different domains. The review is complemented by tabulating several demand side management (DSM) techniques with a specific view on the used demand response (DR) programs, key finding and benefits gained. A special focus is directed to the communication protocols and wireless technology, incorporation of renewable energy resources (RERs), battery energy storage (BES), home appliances scheduling and power quality applications. The outcome of this review reveals that the real time pricing (RTP) is the most efficient price-based mechanism program (PBP), whilst time of use (TOU) is the basic PBP and easiest to implement. Energy efficiency programs have proved the highest influential impact on the annual energy saving over the other dynamic pricing mechanism programs. Through a forecasted proposal of future study, DSM proved tremendous potential annual energy savings, peak demand savings, and investment cost rates within different consumption sectors progressively up to year 2030.

2020 ◽  
Vol 10 (3) ◽  
pp. 5857-5863 ◽  
Author(s):  
T. V. Krishna ◽  
M. K. Maharana ◽  
C. K. Panigrahi

Growing population and expanding industry set off the demand for electrical energy and issues, such as the problem of peak load demand, emerge. To balance the supply and load demand problem, the energy management system has the vital role of Electric Peak shaving with the integration of microgrid into the utility grid. The combination of demand-side management with storable energy sources helps us resolve the matters concerned with the peak load demand. However, in a microgrid, whenever the distributed energy sources are interconnected, the DC bus link voltage will vary due to the inherent behavior of each source as they mainly depend on geographical conditions. This work proposes voltage droop control strategy to keep the DC bus link voltage at a constant value. Also, it gives an overlook of the present power sector scenario of India and a reassessment of the demand side management system and how it is utilized in electrical peak shaving.


Author(s):  
Moses Amoasi Acquah ◽  
Daisuke Kodaira ◽  
Sekyung Han

A Demand-side management technique are deployed along with battery energy-storage systems (BESSs) to lower the electricity cost by mitigating the peak load of a building. Most of the existing methods rely on manual operation of the BESS, or even an elaborate building energy-management system resorting to a deterministic method that is susceptible to unforeseen growth in demand. In this study we propose a real-time optimal operating strategy for BESS based on density demand forecast and stochastic optimization. This method takes into consideration uncertainties in demand when accounting for an optimal BESS schedule, making it robust compared to the deterministic case. The proposed method is verified and tested against existing algorithms. Data obtained from a real site in South Korea is used for verification and testing. The results show that the proposed method is effective, even for the cases where the forecasted demand deviates from the observed demand


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tehreem Nasir ◽  
Syed Sabir Hussain Bukhari ◽  
Safdar Raza ◽  
Hafiz Mudassir Munir ◽  
Muhammad Abrar ◽  
...  

The concept of smart grid was introduced a decade ago. Demand side management (DSM) is one of the crucial aspects of smart grid that provides users with the opportunity to optimize their load usage pattern to fill the gap between energy supply and demand and reduce the peak to average ratio (PAR), thus resulting in energy and economic efficiency ultimately. The application of DSM programs is lucrative for both utility and consumers. Utilities can implement DSM programs to improve the system power quality, power reliability, system efficiency, and energy efficiency, while consumers can experience energy savings, reduction in peak demand, and improvement of system load profile, and they can also maximize usage of renewable energy resources (RERs). In this paper, some of the strategies of DSM including peak shaving and load scheduling are highlighted. Furthermore, the implementation of numerous optimization techniques on DSM is reviewed.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1618
Author(s):  
Mohanasundaram Anthony ◽  
Valsalal Prasad ◽  
Raju Kannadasan ◽  
Saad Mekhilef ◽  
Mohammed H. Alsharif ◽  
...  

This work describes an optimum utilization of hybrid photovoltaic (PV)—wind energy for residential buildings on its occurrence with a newly proposed autonomous fuzzy controller (AuFuCo). In this regard, a virtual model of a vertical axis wind turbine (VAWT) and PV system (each rated at 2 kW) are constructed in a MATLAB Simulink environment. An autonomous fuzzy inference system is applied to model primary units of the controller such as load forecasting (LF), grid power selection (GPS) switch, renewable energy management system (REMS), and fuzzy load switch (FLS). The residential load consumption pattern (4 kW of connected load) is allowed to consume energy from the grid and hybrid resources located at the demand side and classified as base, priority, short-term, and schedulable loads. The simulation results identify that the proposed controller manages the demand side management (DSM) techniques for peak load shifting and valley filling effectively with renewable sources. Also, energy costs and savings for the home environment are evaluated using the proposed controller. Further, the energy conservation technique is studied by increasing renewable conversion efficiency (18% to 23% for PV and 35% to 45% for the VAWT model), which reduces the spending of 0.5% in energy cost and a 1.25% reduction in grid demand for 24-time units/day of the simulation study. Additionally, the proposed controller is adapted for computing energy cost (considering the same load pattern) for future demand, and it is exposed that the PV-wind energy cost reduced to 6.9% but 30.6% increase of coal energy cost due to its rise in the Indian energy market by 2030.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2444 ◽  
Author(s):  
HyungSeon Oh

Power networks are gateways to transfer power from generators to end-users. Often, it is assumed that the transfer occurs freely without any limiting factors. However, power flows over a network can be limited by predetermined limits that may come from physical reasons, such as line capacity or Kirchhoff’s laws. When flow is constrained by these limits, this is called congestion, which reduces the energy efficiency and splits the price for electricity across the congested lines. One promising, cost-effective way to relieve the impact of the congestion is demand-side management (DSM). However, it is unclear how much DSM can impact congestion and where it can control the demand. This paper proposes a new DSM mechanism based on locational willingness-to-pay (WTP) centered around income statistics; utilizes a state-space tool to determine the possibility to alter prices by DSM; and formulates a convex optimization problem to decide the DSM. The proposed methodology is tested on IEEE (Institute of Electrical and Electronics Engineers) systems with two commonly used objectives: cost minimization and social welfare maximization.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Husna Syadli ◽  
Md Pauzi Abdullah ◽  
Muhammad Yusri Hassan ◽  
Faridah Hussin

When the high electricity demand growth is not matched by growth in generating sufficient capacity, deficit cannot be avoided. In Sumatera, power outages of up to 6 hours per day are part of the power crisis experienced. To date, deficits experienced by Sumatera require better management strategy and operation of electric power systems, taking into account the security system, reliability and customer service. This paper briefly discusses the impact of rolling blackouts on the community's economy and proposed demand-side management strategies as short term measure to overcome the power supply deficit in Sumatera. From the analysis, electricity savings in household equipment can save energy consumption by 98.79 MW at peak load and 97.55 MW for off peak load time. 


Sign in / Sign up

Export Citation Format

Share Document