scholarly journals Study on the Selection of the Number of Magnetic Poles and the Slot-Pole Combinations in Fractional Slot PMSM Motor with a High Power Density

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 215
Author(s):  
Tomasz Wolnik ◽  
Vítezslav Styskala ◽  
Tomas Mlcak

Fractional slot, PMSM motors with a properly designed electromagnetic circuit allow for obtaining high power density factors (more than 4 kW per 1 kg of total motor weight). The selection of the number of magnetic poles to the specific dimensions and operating conditions of the motor, as well as the number of slots for the selected number of magnetic poles is the subject of the analysis in this article. This issue is extremely important because it affects the mass of the motor, the value of shaft torque, shaft power and the value of rotor losses. The aim of the work is to select solutions with the highest values of power density factor and, at the same time, the lowest values of rotor losses. The object of the study is a fractional slot PMSM motor with an external solid rotor core with surface permanent magnets (SPM). Motor weight is approximately 10 kg, outer diameter is 200 mm and a maximum power is 50 kW at 4800 r/min. The article analyzes the selection of magnetic poles in the range from 2p = 12 to 2p = 24 and various slot-pole combinations for individual magnetic poles. The target function of the objective was achieved and the calculations results were verified on the physical model. The best solutions were 20-pole, 30-slots (highest efficiency and lowest rotor loss) and 24-pole, 27 slots (highest power density).

2021 ◽  
Vol 11 (6) ◽  
pp. 7846-7852
Author(s):  
M. Hussain ◽  
A. Ulasyar ◽  
H. Sheh Zad ◽  
A. Khattak ◽  
S. Nisar ◽  
...  

The main objective of this paper is to study the effect of phase numbers in the dual rotor Brushless DC (BLDC) motor for its application in Electric Vehicles (EVs). The performance of two novel 5-, and 7-phase dual rotor BLDC motors is compared against the standard 3-phase dual rotor BLDC motor. The proposed motors combine the positive characteristics of multiphase BLDC motor and the dual rotor BLDC motor thus achieving better fault tolerance capability, high power density, and less per phase stator current. Finite Element Method (FEM) was used to design the 3-, 5-, and 7-phase dual-rotor BLDC motors. The design parameters and operating conditions are kept the same for a fair comparison. The stator current and torque performance of the proposed motors were obtained with FEM simulation and were compared with the standard 3-phase dual rotor BLDC motor. It is possible to use low power rating power electronics switches for the proposed motor. The simulation results also validate low torque ripples and high-power density in the proposed motors. Finally, the fault analysis of the designed motors shows that the fault tolerance capability increases as the phase number increases.


Author(s):  
Arun K. S. Iyengar ◽  
Gianfranco DiGiuseppe ◽  
Niranjan Desai ◽  
Shailesh Vora ◽  
Larry Shockling

The electrical performance of solid oxide fuel cells (SOFC) has been traditionally characterized using isothermal cell tests and button cell tests. However, the evaluation of performance, operation, and structural integrity of cells in a typical SOFC stack are not only less amenable to confirmation through testing but are also significantly expensive than computational simulations. Computational models are invaluable in extending the measured isothermal cell test characteristics to predict both electrical performance and mechanical behavior of SOFCs in a stack under different operating conditions. The present investigation is part of an ongoing program of numerical developments and investigations to model the cell thermal and electrical characteristics in a stack environment. The ultimate objective is the development of an optimized cell geometry based on performance, structural integrity, and manufacturability. The flattened tubular high power density (HPD) cell, featuring five air channels fed by air feed tubes, was investigated. A CFD model of the HPD cell was developed using the commercial CFD software Fluent 6.2. A Fluent based SOFC model was used to simulate the electrochemical effects. The cathode, the anode, and the interconnection layers of the cell were resolved in the model and all modes of heat transfer, conduction, convection, and radiation were included. The results of the CFD model at isothermal conditions are presented and compared with experimentally measured isothermal cell V-J’s at 1000°C, 900°C, and 800°C. The model results agree well with the experimental data for cell temperatures of 1000°C and 900°C, after some tuning of exchange current density and tortuosity values. The agreement with the 800°C data however is not as good. The CFD model was then configured and analyzed with operating conditions typically encountered with a stack design that is currently under development. The resulting thermal, electrical, and flow fields are presented herein and discussed. It was found that the Fluent based SOFC model is a robust and effective tool for analyzing the complex and highly interactive three-dimensional electrical, thermal, and fluid flow fields, generally associated with the HPD cells. The computational time with the Fluent based model is however large in comparison with lumped-parameter approaches, mainly due to slow radiation convergence. Nevertheless, the comprehensive current density and thermal fields generated with the Fluent based model are necessary to enable a better prediction of thermal stresses within the cell, thereby permitting a more robust cell and module design.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Qun Chao ◽  
Junhui Zhang ◽  
Bing Xu ◽  
Hsinpu Huang ◽  
Min Pan

The continued development of electro-hydrostatic actuators (EHAs) in aerospace applications has put forward an increasing demand upon EHA pumps for their high power density. Besides raising the delivery pressure, increasing the rotational speed is another effective way to achieve high power density of the pump, especially when the delivery pressure is limited by the strength of materials. However, high-speed operating conditions can lead to several challenges to the pump design. This paper reviews the current challenges including the cavitation, flow and pressure ripples, tilting motion of rotating group and heat problem, associated with a high-speed rotation. In addition, potential solutions to the challenges are summarized, and their advantages and limitations are analyzed in detail. Finally, future research trends in EHA pumps are suggested. It is hoped that this review can provide a full understanding of the speed limitations for EHA pumps and offer possible solutions to overcome them.


Author(s):  
Andreas Patschger ◽  
Markus Franz ◽  
Jens Bliedtner ◽  
Jean Pierre Bergmann

Sign in / Sign up

Export Citation Format

Share Document