scholarly journals Studying Four Different Permanent Magnet Eddy Currents Heaters with Different Magnet Areas and Numbers to Produce Heat Directly from a Vertical Axis Wind Turbine

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 275
Author(s):  
Ali Khanjari ◽  
Sangkyun Kang ◽  
Daeyong Lee ◽  
Dae-Yi Jung ◽  
Jang-Ho Lee

Changing the magnetic field on a conductor metal can induce eddy currents, which cause heat generation. In this paper, we use this idea to convert wind energy into thermal energy directly. This system contains a vertical axis wind turbine and an eddy currents heat generator. The eddy currents heat generator has two parts. The first part is a rotor with some permanent magnets causing the magnetic field changes, and the second part is a stator that acts as a conductor. The magnetic field changes in the heat generator play an important role in power output; therefore, we test four different magnet arrangements with different pole numbers on the rotor at different rotational speeds from 100 rpm to 500 rpm to measure the input torque and power needed to rotate each model. Then, based on the measured data, the wind turbine is designed by Qblade software based on the blade element momentum theory. It is shown that compared to the weight of the heat generator and the area of magnetization, designing a proper magnet arrangement for the heat generator can change the output power considerably as it can trigger the magnetic field fluctuation along the direction of rotation. For example, opting for a proper arrangement on the rotor decreases the number of poles from 120 to 24 but increases the power input from 223 W to 1357 W.

Author(s):  
Hagninou E. V. Donnou ◽  
Drissa Boro ◽  
Donald Abode ◽  
Brunel Capo-Chichi ◽  
Aristide B. Akpo

The design of a vertical axis wind turbine (Darrieus type) adapted to the site of Cotonou in the coastal region of Benin was investigated. The statistical study of winds based on the Weibull distribution was carried out on hourly wind data measured at 10 m above the ground by the Agency for the Safety of Air Navigation in Africa and Madagascar (ASECNA) over the period from January 1981 to December 2014. The geometrical and functional parameters of the wind turbine were determined from different models and aerodynamic approaches. The digital design and assembly of the wind turbine components were carried out using the TOPSOLID software. The designed wind turbine has a power of 200W. It is equipped with a synchronous generator with permanent magnets and has three wooden blades with NACA 0015 profile. The optimal coefficient of lift and drag were estimated respectively at 0.7832 and 0.01578. The blades are characterized by an optimum angle of attack estimated at 6.25° with a maximum fineness of 49.63. Their length is 4 m and the maximum thickness is estimated at 0.03 m with a chord of 0.20 m. The volume and mass are respectively equal to 0.024 m3 and 36 kg. The aerodynamic stall occurs at an attack angle of 14.25°. The aerodynamic force exerted on these blades is estimated to be 240 N. The aerodynamic stresses exerted on the rotor are estimated at 15 864 504 Pa and the solidity at 0.27. The efficiency of the wind turbine is 0.323. From TOPSOLID, the geometrical shape of each component of the wind turbine is represented in three dimensions. The assembly allowed to visualizing the wind turbine after export via its graphical interface. The quantity of annual energy produced by the wind turbine was estimated at 0.85 MWh. This study is the first to be carried out in the study area and could reduce the technological dependence of vertical axis wind turbines and their import for low cost energy production.


The main aim of the paper is to design a windmill that operates without generator and ball bearings and to get maximum power output. The use of wind energy for energy generation is one of the oldest methods for harnessing renewable energy. Use of renewable energy is an essential ingredient of socio-economic development and economic growth. A vertical axis wind turbine (VAWT) is introduced by magnetic levitation technology to optimize the performance. The system utilizes the nature of permanent magnet as a replacement for ball bearings to levitate the turbine component and thus minimize energy losses while rotating, which is the major problem that furthermore, the system can be suited by conventional wind turbine. The Maglev Wind Turbine is expected to bring wind power technology to the next level. Furthermore, the system can be suited in use for more rural and urban areas of low speed regions. The selection of magnet materials in the design of wind turbine system will be discussed. Power will then be generated with an axial flux generator, which incorporates the use of permanent magnets and a set of coils


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2017 ◽  
Author(s):  
Prof. R.K. Bhoyar ◽  
Prof. S.J. Bhadang ◽  
Prof. N.Z. Adakane ◽  
Prof. N.D. Pachkawade

Sign in / Sign up

Export Citation Format

Share Document