scholarly journals OC6 Phase Ia: CFD Simulations of the Free-Decay Motion of the DeepCwind Semisubmersible

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 389
Author(s):  
Lu Wang ◽  
Amy Robertson ◽  
Jason Jonkman ◽  
Jang Kim ◽  
Zhi-Rong Shen ◽  
...  

Currently, the design of floating offshore wind systems is primarily based on mid-fidelity models with empirical drag forces. The tuning of the model coefficients requires data from either experiments or high-fidelity simulations. As part of the OC6 (Offshore Code Comparison Collaboration, Continued, with Correlation, and unCertainty (OC6) is a project under the International Energy Agency Wind Task 30 framework) project, the present investigation explores the latter option. A verification and validation study of computational fluid dynamics (CFD) models of the DeepCwind semisubmersible undergoing free-decay motion is performed. Several institutions provided CFD results for validation against the OC6 experimental campaign. The objective is to evaluate whether the CFD setups of the participants can provide valid estimates of the hydrodynamic damping coefficients needed by mid-fidelity models. The linear and quadratic damping coefficients and the equivalent damping ratio are chosen as metrics for validation. Large numerical uncertainties are estimated for the linear and quadratic damping coefficients; however, the equivalent damping ratios are more consistently predicted with lower uncertainty. Some difference is observed between the experimental and CFD surge-decay motion, which is caused by mechanical damping not considered in the simulations that likely originated from the mooring setup, including a Coulomb-friction-type force. Overall, the simulations and the experiment show reasonable agreement, thus demonstrating the feasibility of using CFD simulations to tune mid-fidelity models.

Subject Offshore wind costs and potential. Significance The International Energy Agency (IEA) released a report on October 25 estimating that offshore wind capacity will rise 15-fold over the next two decades. Costs have been falling ahead of expectations and further cost reductions will help the sector to build more momentum. Impacts North European turbine producers and wind project developers see huge export potential, but Chinese firms will provide stiff competition. Offshore construction vessels will support rising offshore wind deployment and help to bolster currently weak shipyard order books. Governments and regulators will create supportive policies for offshore wind, but this will occur gradually and differently across regions.


2019 ◽  
Vol 9 (6) ◽  
pp. 1075 ◽  
Author(s):  
Zhenqing Liu ◽  
Yuangang Tu ◽  
Wei Wang ◽  
Guowei Qian

The International Energy Agency (IEA), under the auspices of their Offshore Code Comparison Collaboration (OC3) initiative, has completed high-level design OC-3 Hywind system. In this system the wind turbine is supported by a spar buoy platform, showing good wave-resistance performance. However, there are still large values in the motion of surge degree of freedom (DOF). Addition of clump masses on the mooring lines is an effective way of reducing the surge motion. However, the optimization of the locations where the clump masses are added is still not clear. In this study, therefore, an in-house developed code is verified by comparing the results of the original OC3 model with those by FAST. The improvement of the performance of this modified platform as a function of the location of the clump masses has been examined under three regular waves and three irregular waves. In the findings of these examination, it was apparent that attaching clump masses with only one-tenth of the mass of the total mooring-line effectively reduces the wave-induced response. Moreover, there is an obvious improvement as the depth of the location where the clump masses mounted is increased.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1974
Author(s):  
Mareike Leimeister ◽  
Athanasios Kolios ◽  
Maurizio Collu

The complexity of floating offshore wind turbine (FOWT) systems, with their coupled motions, aero-hydro-servo-elastic dynamics, as well as non-linear system behavior and components, makes modeling and simulation indispensable. To ensure the correct implementation of the multi-physics, the engineering models and codes have to be verified and, subsequently, validated for proving the realistic representation of the real system behavior. Within the IEA (International Energy Agency) Wind Task 23 Subtask 2 offshore code-to-code comparisons have been performed. Based on these studies, using the OC3 phase IV spar-buoy FOWT system, the Modelica for Wind Turbines (MoWiT) library, developed at Fraunhofer IWES, is verified. MoWiT is capable of fully-coupled aero-hydro-servo-elastic simulations of wind turbine systems, onshore, offshore bottom-fixed, or even offshore floating. The hierarchical programing and multibody approach in the object-oriented and equation-based modeling language Modelica have the advantage (over some other simulation tools) of component-based modeling and, hence, easily modifying the implemented system model. The code-to-code comparisons with the results from the OC3 studies show, apart from expected differences due to required assumptions in consequence of missing data and incomplete information, good agreement and, consequently, substantiate the capability of MoWiT for fully-coupled aero-hydro-servo-elastic simulations of FOWT systems.


Author(s):  
Nathan Tom ◽  
Amy Robertson ◽  
Jason Jonkman ◽  
Fabian Wendt ◽  
Manuela Böhm

Abstract The focus of the Offshore Code Comparison Collaboration, Continuation, with Correlation and unCertainity (OC6) project, which operates under the International Energy Agency Wind Task 30, is to refine the accuracy of engineering tools used to design offshore wind turbines. In support of this work, a new validation campaign is being developed that seeks to better understand the nonlinear wave loading that excites floating wind systems at their low-frequency, rigid-body modes in surge and pitch. The validation data will be employed in a three-way validation between simplified engineering tools and higher-fidelity tools, such as computational fluid dynamics (CFD). Irregular wave spectrums, which are traditionally used to examine the nonlinear wave interaction with offshore structures, are too computationally expensive to be simulated in CFD tools, and so we will employ bichromatic wave cases instead. This paper reviews the process used to choose the bichromatic wave pairs to be applied in the campaign to validate the second-order difference-frequency quadratic and potential loads at the surge and pitch natural frequencies of a floating semisubmersible.


2019 ◽  
Author(s):  
Frédérick Jaouën ◽  
Arjen Koop ◽  
Lucas Vatinel

Abstract The horizontal motions of a moored offshore structure in waves are dominated by the resonance phenomena that occur at the natural frequencies of the system. Therefore, the maximum excursions of the structure depend on both the wave loads and the damping in the system. At present, potential flow calculations are employed for predicting the wave loads on offshore structures. However, such methods cannot predict hydrodynamic damping which is dominated by viscous effects. Therefore, the current practice in the industry is to obtain the low-frequency damping based on model testing. Nowadays, CFD simulations also have the potential to predict the low-frequency viscous damping of offshore structures in calm water. To obtain confidence in the accuracy of CFD simulations, a proper validation of the results of such CFD calculations is essential. In this paper, the flow around a forced surging or swaying LNGC is calculated using the CFD code ReFRESCO. The objective is to assess the accuracy and applicability of CFD for predicting the low-frequency viscous damping. After a description of the code and the used numerical methods, the results are presented and compared with results from model tests. Both inertia and damping coefficients are analyzed from the calculated hydrodynamics loads. Extensive numerical studies have been carried out to determine the influence of grid resolution, time step and iterative convergence on the flow solution and on the calculated damping. The numerical uncertainty of the results are assessed for one combination of amplitude and period for the surge motion. The CFD results are compared to experimental results indicating that the calculated damping coefficients agree within 5% for both surge and sway motion.


2016 ◽  
Author(s):  
Mahesh J. Rao ◽  
S. Nallayarasu ◽  
S. K. Bhattacharyya

Linear damping models have been used in the past for solving floating body dynamics, especially for simple geometries such as spar. However, due to the addition of heave damping elements to spar such as heave plate, complex flow around these elements may change the relationship between damping and velocity of the body to nonlinear. The damping plays a major role in accurate determination of motion response of spars, especially the heave. Free decay tests have been carried out for spar with and without heave plate in calm water condition. The Computational Fluid Dynamics (CFD) simulation of heave decay is carried out using ANSYS FLUENT and validated by free decay test results using scale models. Mesh convergence study has been conducted to determine the optimum mesh size. The heave motion obtained from CFD are used to derive the damping terms by matching the heave motion obtained using equation of motion by changing the damping term with linear, quadratic and the combination of linear and quadratic. The heave motion obtained from linear damping model matches well with that obtained from measured motion and CFD simulation for spar without heave plate. However, the linear / quadratic damping models alone are not suitable for spar with heave plate. Hence a combination of linear and quadratic damping model is proposed for spar with heave plate. The heave motion computed using a combination of linear and quadratic damping model matches well with that obtained from experimental studies and CFD simulations thus indicating the complexity of flow around heave plate in comparison to the spar alone. Further, the vortices around the spar models obtained from CFD simulations are also presented and discussed with regard to the higher order damping.


2014 ◽  
Vol 31 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Y-J. Lee ◽  
C.-Y. Ho ◽  
Z.-Z. Huang

AbstractFloating offshore wind turbines (FOWTs) can be used to exploit the enormous wind energy present over deep waters. Numerous studies have examined the dynamics of FOWTs, but few have focused on validating numerical results with experimental results, particularly for a deep draught FOWT in regions with frequent tropical storms. For this study, we developed a computer code and conducted experiments with a scale model to validate the simulation results. The computer code was first verified by comparing the results with those of the International Energy Agency Wind Task 23. Numerical simulations were implemented in both the frequency domain and the time domain. A comparison of the numerical and experimental results of the scale model in high waves showed good agreement. The flexibility of blades and the tower did not observably affect the motion of the deep draft spar-type FOWT. Therefore, it can be ignored in the preliminary design. The pitch motion of the scale model was within 1°. Therefore, the spar-type FOWT may be an effective power source for regions with frequent tropical storms.


2021 ◽  
Author(s):  
Mohammad Youssef Mahfouz ◽  
Climent Molins ◽  
Pau Trubat ◽  
Sergio Hernández ◽  
Fernando Vigara ◽  
...  

Abstract. The EU Horizon 2020 project COREWIND has developed two floating platforms for the new International Energy Agency (IEA) Wind 15 MW reference model. One design – WindCrete – is a spar floater, and the other – Activefloat – is a semi-submersible floater. In this work the design of the floaters is introduced with their aero-hydro-servo-elastic numerical models, and the responses of both floaters in both static and dynamic simulations are verified against the operational and survival design limits. The static displacements and natural frequencies are simulated and discussed. Additionally, the effects of the mean wave drift forces, and difference second order wave forces on the systems' responses are presented. The increase in the turbine's power capacity to 15MW in IEA Wind model, leads to an increase in inertial forces and aerodynamic thrust force when compared to similar floating platforms coupled to the Danish Technical University (DTU) 10MW reference model. The goal of this work is to investigate the floaters responses at different load cases. The results in this paper suggest that at mild wave loads the motion responses of the 15MW Floating Offshore Wind Turbines (FOWT) are dominated by low frequency forces. Therefore, motions are dominated by the wind forces, and second order wave forces rather than the first order wave forces. After verifying and understanding the models' responses, the two 15MW FOWT reference numerical models are publicly available to be used in the research and development of floating wind energy.


Sign in / Sign up

Export Citation Format

Share Document