scholarly journals Effects of Plateau Environment on Combustion and Emission Characteristics of a Plateau High-Pressure Common-Rail Diesel Engine with Different Blending Ratios of Biodiesel

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 550
Author(s):  
Guohai Jia ◽  
Guoshuai Tian ◽  
Daming Zhang

Taking a plateau high-pressure common-rail diesel engine as the research model, a model was established and simulated by AVL FIRE according to the structural parameters of a diesel engine. The combustion and emission characteristics of D, B20, and B50 diesel engines were simulated in the plateau atmospheric environment at 0 m, 1000 m, and 2000 m. The calculation results show that as the altitude increased, the peak in-cylinder pressure and the cumulative heat release of diesel decreased with different blending ratios. When the altitude increased by 1000 m, the cumulative heat release was reduced by about 5%. Furthermore, the emission trend of NO, soot, and CO was to first increase and then decrease. As the altitude increased, the mass fraction of NO emission decreased. As the altitude increased, the mass fractions of soot and CO increased. Additionally, when the altitude was 0 m and 1000 m, the maximum temperature, the mass fraction of OH, and the fuel–air ratio of B20 were higher and more uniform. When the altitude was 2000 m, the maximum temperature, the mass fraction of OH, and the fuel–air ratio of B50 were higher and more uniform. Lastly, as the altitude increased, the maximum combustion temperature of D and B20 decreased, and combustion became more uneven. As the altitude increased, the maximum combustion temperature of B50 increased, and the combustion became more uniform. As the altitude increased, the fuel–air ratio and the mass fractions of OH and NO decreased. When the altitude increased, the soot concentration increased, and the distribution area was larger.

2021 ◽  
Vol 9 ◽  
Author(s):  
Haili Liu ◽  
Qingchao Hong ◽  
Heyun Liu ◽  
Zhen Huang ◽  
Xu Zhang ◽  
...  

Fast-growing grass, as a popular renewable energy, is low in sulfur content, so NOx is the major pollutant during its combustion. To study the emission characteristics of NOx and obtain the data of controlling NOx emission, the effects of combustion temperature as well as the additive type and mass fraction were investigated on the emission characteristics of NOx from the combustion of fast-growing grass. Results revealed that the first peak for NOx emission from this combustion gradually increases with an increase in temperature. Moreover, the additives were found to dramatically impact the amount of NOx emission and its representative peak. The optimal additives and their optimal mass fractions were determined at various specific temperatures to reduce NOx emission. At combustion temperatures of 600, 700, 750, 800, and 850°C, the optimal conditions to limit NOx emissions were 5% SiO2, 3% Al2O3, 3% Ca(OH)2, 15% Al2O3, and 3% SiO2 (or 3% Al2O3), respectively; the corresponding emission peaks decreased by 43.59, 44.21, 47.99, 24.18, and 30.60% (or 31.51%), with denitration rates of 63.28, 50.34, 57.44, 27.05, and 27.34% (or 27.28%), respectively.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121692
Author(s):  
Weihua Zhao ◽  
Junhao Yan ◽  
Suya Gao ◽  
Timothy H. Lee ◽  
Xiangrong Li

Author(s):  
Jianjun Zhu ◽  
Peng Li ◽  
Yufeng Xie ◽  
Xin Geng

The effects of compression ratio and fuel delivery advance angle on the combustion and emission characteristics of premixed methanol charge induced ignition by Fischer Tropsch diesel engine were investigated using a CY25TQ diesel engine. In the process of reducing the compression ratio from 16.9 to 15.4, the starting point of combustion is fluctuating, the peak of in-cylinder pressure and the maximum pressure increase rate decrease by 44.5% and 37.7% respectively. The peak instantaneous heat release rate increases by 54.4%. HC and CO emissions are on a rising trend. NOx and soot emissions were greatly decreased. The soot emission has the biggest drop of 50%. Reducing the fuel delivery advance angle will make the peak of in-cylinder pressure and the peak of pressure rise rate increase while the peak of heat release rate decreases. The soot emission is negatively correlated with the fuel delivery advance angle. When the fuel delivery advance angle is 16° CA, the soot emissions increased the most by 130%.


2019 ◽  
Vol 969 ◽  
pp. 451-460
Author(s):  
Manpreet Singh ◽  
Mohd Yunus Sheikh ◽  
Dharmendra Singh ◽  
P. Nageswara Rao

The rapid rise in energy requirement and problem regarding atmosphere pollutions, renewable biofuels are the better alternative choice for the internal combustion engine to partially or totally replace the pollutant petroleum fuel. In the present work, thumba (Citrullus colocynthis) non-edible vegetable oil is used for the production of biodiesel and examine its possibility as diesel engine fuel. Transesterification process is used to produce biodiesel from thumba non-edible vegetable oil. Thumba biodiesel (TBD) is used to prepare five different volume concentration (blends) with neat diesel (D100), such as TBD5, TBD15, TBD25, TBD35 and TBD45 to run a single cylinder diesel engine. The diesel engine's combustion parameter such as in-cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, and mass fraction burnt analyzed through graphs and compared all thumba biodiesel blends result with neat diesel fuel. The mass fraction burnt start earlier for thumba biodiesel blends compared to diesel fuel because of less ignition delay while peak in-cylinder pressure, maximum rate of pressure rise, maximum net heat release rate, maximum cumulative heat release, and maximum mean gas temperature has found decreased results up to 1.93%, 5.53%, 4.11%, 4.65%, and 1.73% respectively for thumba biodiesel.


Sign in / Sign up

Export Citation Format

Share Document