Effects of iron-based fuel borne catalyst addition on combustion, in-cylinder soot distribution and exhaust emission characteristics in a common-rail diesel engine

Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 120096
Author(s):  
Junheng Liu ◽  
Pengcheng Wu ◽  
Ping Sun ◽  
Qian Ji ◽  
Qi Zhang ◽  
...  
Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121692
Author(s):  
Weihua Zhao ◽  
Junhao Yan ◽  
Suya Gao ◽  
Timothy H. Lee ◽  
Xiangrong Li

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 550
Author(s):  
Guohai Jia ◽  
Guoshuai Tian ◽  
Daming Zhang

Taking a plateau high-pressure common-rail diesel engine as the research model, a model was established and simulated by AVL FIRE according to the structural parameters of a diesel engine. The combustion and emission characteristics of D, B20, and B50 diesel engines were simulated in the plateau atmospheric environment at 0 m, 1000 m, and 2000 m. The calculation results show that as the altitude increased, the peak in-cylinder pressure and the cumulative heat release of diesel decreased with different blending ratios. When the altitude increased by 1000 m, the cumulative heat release was reduced by about 5%. Furthermore, the emission trend of NO, soot, and CO was to first increase and then decrease. As the altitude increased, the mass fraction of NO emission decreased. As the altitude increased, the mass fractions of soot and CO increased. Additionally, when the altitude was 0 m and 1000 m, the maximum temperature, the mass fraction of OH, and the fuel–air ratio of B20 were higher and more uniform. When the altitude was 2000 m, the maximum temperature, the mass fraction of OH, and the fuel–air ratio of B50 were higher and more uniform. Lastly, as the altitude increased, the maximum combustion temperature of D and B20 decreased, and combustion became more uneven. As the altitude increased, the maximum combustion temperature of B50 increased, and the combustion became more uniform. As the altitude increased, the fuel–air ratio and the mass fractions of OH and NO decreased. When the altitude increased, the soot concentration increased, and the distribution area was larger.


Author(s):  
Yoichi Niki ◽  
Yoshifuru Nitta ◽  
Hidenori Sekiguchi ◽  
Koichi Hirata

This study focuses NH3 as an alternative fuel for internal combustion engines, because NH3 is known as a H2 carrier and its combustion does not produce CO2 causing global warming. On the other hand, some reports show that unburned NH3 and N2O appear in exhaust gas, when NH3 is used as fuel for compression ignition or spark ignition engines. NH3 is toxic and N2O is one of the greenhouse gases. These emissions should not be emitted. These reports point out that exhaust gas after treatments and/or injection strategies can be effective to reduce these emissions. From our previous investigations, it was confirmed that NH3 and N2O were contained in the exhaust gas of a conventional diesel engine with NH3 gas mixed into the engine intake. In this study, NH3 combustion processes in the diesel engine were investigated from the experimental results. Based on the investigations, a pilot or postinjection was conducted to reduce emissions of NH3 and N2O. In this paper, first the experimental results of the combustion and exhaust emission characteristics on the conventional diesel engine with NH3 gas mixed into the engine intake are shown. NH3 and N2O emissions are then verified by analyzing the exhaust gas. Next, NH3 combustion processes in the diesel engine are considered from the experimental results to report on the effects of a pilot and postdiesel fuel injection on NH3 and N2O production processes. The experimental results suggest that the multiple diesel fuel injections would be one of the effective measures to reduce N2O and NH3 emissions on NH3 and diesel dual-fueled engine.


2004 ◽  
Vol 2004.I (0) ◽  
pp. 151-152
Author(s):  
Yukihiro AIMOTO ◽  
Shinji NAJIMA ◽  
Osamu MORIUE ◽  
Masato MIKAMI ◽  
Naoya KOJIMA

Sign in / Sign up

Export Citation Format

Share Document