scholarly journals Numerical Study of Evaporation Modelling for Different Fuels at High Operating Conditions in a Diesel Engine

2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Ali Raza ◽  
Sajjad Miran ◽  
Tayyab Ul Islam ◽  
Kishwat IJaz Malik ◽  
Zunaira-Tu-Zehra ◽  
...  

A fuel injection system in a diesel engine has different processes that affect the complete burning of the fuel in the combustion chamber. These include the primary and secondary breakups of liquid fuel droplets and evaporation. In the present paper, evaporation of two different diesel fuels has been modelled numerically. Evaporation of n-heptane and n-decane is governed by the conservation equations of mass, energy, momentum, and species transport. Results have been plotted by varying the droplet diameter and temperature. It was observed that droplet size, temperature of droplets, and ambient temperature have notable effect on the evaporation time of diesel fuel droplets in the engine cylinder.

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2285
Author(s):  
Min-Seop Kim ◽  
Ugochukwu Ejike Akpudo ◽  
Jang-Wook Hur

Diesel engine emissions contribute nearly 30% of greenhouse effects and diverse health and environmental problems. Amidst these problems, it is estimated that there will be a 75% increase in energy demand for transportation by 2040, of which diesel fuel constitutes a major source of energy for transportation. Being a major source of air pollution, efforts are currently being made to curb the pollution spread. The use of water-in-diesel (W/D)-emulsified fuels comes as a readily available (and cost-effective) option with other benefits including engine thermal efficiency, reduced costs, and NOx reduction; nonetheless, the inherent effects—power loss, component wear, corrosion, etc. still pose strong concerns. This study investigates the behavior and damage severity of a common rail (CR) diesel fuel injection system using exploratory and statistical methods under different W/D emulsion conditions and engine speeds. Results reveal that the effect of W/D emulsion fuels on engine operating conditions are reflected in the CR, which provides a reliable avenue for condition monitoring. Also, the effect of W/D emulsion on injection system components-piston, nozzle needle, and ball seat–are presented alongside related discussions.


Fuel injection system is an indispensible part of the present day automobiles. The depletion of the fuels along with continuous surge in the fuel prices has made it imperative to use fuel economically and restricting the wastage to a minimum. Contrary to the carburetor, using predefined amount of fuel irrespective of the environment, Fuel Injection System uses just the required amount of fuel based on the operating conditions as sensed by the Engine Control Module (ECM). Numerous parameters are required to be sensed by the ECM to achieve optimum efficiency of the engine. To handle the processing of such large number of parameters, a robust architecture is required. This paper presents the design and implementation of ECM utilized in Electronic Fuel Injection (EFI) system on a Field Programmable Gate Array. The ECM architecture discussed in the proposed system is computationally efficient enough to fulfill ever-increasing functionalities of the ECM. The main objective of this research is to sense the parameters required for the ECM analysis and to interpret and analyze this data and accordingly control the solenoid (actuator). The CAN controller is also deployed in an FPGA to facilitate the communication between ECM and Human Machine Interface (HMI) to indicate the parameters sensed by the sensor on the LCD. The target device (FPGA) for this work is Xilinx Spartan 3E and the design tool is Xilinx ISE 14.7 with the ECM and CAN controller being modeled in Verilog Hardware Description Language (HDL).


2019 ◽  
Vol 179 (4) ◽  
pp. 75-79
Author(s):  
Łukasz GRABOWSKI ◽  
Paweł KARPIŃSKI ◽  
Grzegorz BARAŃSKI

This paper presents the results of experimental studies of the opposed-piston diesel engine. This engine was designed during one of the stages of the research on a new-type drive unit for gyrocopter applications. In order to conduct research, a special test stand as well as control and measurement systems were developed. As part of the work on the engine, the fuel injection system, engine temperature control system and measurement systems were designed. In addition, a computer program has been developed for the fuel injection system control (injectors, valves fuel pressure regulators). The paper presents the results of the preliminary tests for a single value of engine speed (1500 rpm) and three values of load defined by torque. The measured value of the indicated pressure made it possible to calculate the maximum pressure. The results obtained from the bench tests were analyzed.


2016 ◽  
Vol 167 (4) ◽  
pp. 53-57
Author(s):  
Joanna LEWIŃSKA

The article presents results of a laboratory study on exhaust gas emission level from a marine diesel engine. The object of the laboratory study was a four-stroke marine diesel engine type Al 25/30 Sulzer, operated at a constant speed. The examination on the engine was carried out according to regulations of the Annex VI to MARPOL 73/78 Convention. The laboratory study consisted of 3 observations: the engine assumed to be operating without malfunctions, delay of the fuel injection by 5° of crankshaft angle in the second engine cylinder, and the leakage of the fuel pump on the second engine cylinder. Additionally, parameters of fuel consumption and thermodynamic parameters of the marine engine were measured during the research. Simulated malfunctions caused changes in total weighed NOx, CO, and CO2 emissions for all considered engine loads. All simulated malfunctions caused a small change in measured thermodynamic parameters of the engine. The engine operation with the delayed fuel injection and the fuel leakage in the fuel pump in one cylinder caused a decrease of NOx and CO emission level. Fuel leakage in the fuel pump causes the CO2 emission to decrease only at low engine load. Calculations of the weighed specific fuel consumption present a 1-2% change in the engine efficiency.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


Author(s):  
Katharina Warncke ◽  
Amsini Sadiki ◽  
Max Staufer ◽  
Christian Hasse ◽  
Johannes Janicka

Abstract Predicting details of aircraft engine combustion by means of numerical simulations requires reliable information about spray characteristics from liquid fuel injection. However, details of liquid fuel injection are not well documented. Indeed, standard droplet distributions are usually utilized in Euler-Lagrange simulations of combustion. Typically, airblast injectors are employed to atomize the liquid fuel by feeding a thin liquid film in the shear zone between two swirled air flows. Unfortunately, droplet data for the wide range of operating conditions during a flight is not available. Focusing on numerical simulations, Direct Numerical simulations (DNS) of full nozzle designs are nowadays out of scope. Reducing numerical costs, but still considering the full nozzle flow, the embedded DNS methodology (eDNS) has been introduced within a Volume of Fluid framework (Sauer et al., Atomization and Sprays, vol. 26, pp. 187–215, 2016). Thereby, DNS domain is kept as small as possible by reducing it to the primary breakup zone. It is then embedded in a Large Eddy Simulation (LES) of the turbulent nozzle flow. This way, realistic turbulent scales of the nozzle flow are included, when simulating primary breakup. Previous studies of a generic atomizer configuration proved that turbulence in the gaseous flow has significant impact on liquid disintegration and should be included in primary breakup simulations (Warncke et al., ILASS Europe, Paris, 2019). In this contribution, an industrial airblast atomizer is numerically investigated for the first time using the eDNS approach. The complete nozzle geometry is simulated, considering all relevant features of the flow. Three steps are necessary: 1. LES of the gaseous nozzle flow until a statistically stationary flow is reached. 2. Position and refinement of the DNS domain. Due to the annular nozzle design the DNS domain is chosen as a ring. It comprises the atomizing edge, where the liquid is brought between inner and outer air flow, and the downstream primary breakup zone. 3. Start of liquid fuel injection and primary breakup simulation. Since the simulation of the two-phase DNS and the LES of the surrounding nozzle flow are conducted at the same time, turbulent scales of the gas flow are directly transferred to the DNS domain. The applicability of eDNS to full nozzle designs is demonstrated and details of primary breakup at the nozzle outlet are presented. In particular a discussion of the phenomenological breakup process and spray characteristics is provided.


Sign in / Sign up

Export Citation Format

Share Document