scholarly journals An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case

Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 48
Author(s):  
Ana Teodoro ◽  
Patrícia Santos ◽  
Jorge Espinha Marques ◽  
Joana Ribeiro ◽  
Catarina Mansilha ◽  
...  

The São Pedro da Cova waste pile (Porto, Portugal) is composed of coal mining residues that have been self-burning since 2005 and is located close to an inhabited area and social infrastructures, further adding to effects on the environment and human health. Therefore, there is a great interest in the environmental monitoring of this waste pile. This work describes an integrative multi-approach that allows the environmental monitoring of several parameters of the waste pile, applying several technologies. The temperature measurements were obtained by a thermal infrared (TIR) sensor on board an unmanned aerial vehicle (UAV) and supplemented with field measurements. In order to evaluate the altimetric variations, for each flight, a digital elevation model (DEM) was generated considering a multispectral sensor also on board the UAV. The hydrogeochemical characterization was performed through the analysis of groundwater and surface water samples, with and without the influence of mine drainage. The soil monitoring included the analysis of waste material as well as the surface soil in the surrounding area of the waste pile. All the data were analyzed and integrated in a geographical information system (GIS) open-source application. The adopted multi-approach methodology, given its intrinsic interdisciplinary character, has proven to be an effective way of encompassing the complexity of this type of environmental problem.

2009 ◽  
Vol 3 (2) ◽  
pp. 231-243 ◽  
Author(s):  
S. Baumann ◽  
S. Winkler ◽  
L. M. Andreassen

Abstract. The maximum glacier extent during the "Little Ice Age" (mid 18th century AD) in Jotunheimen, southern Norway, was mapped using remote sensing techniques. Interpretation of existing glaciochronological studies, analysis of geomorphological maps, and own GPS-field measurements were applied for validation of the mapping. The length of glacier centrelines and other inventory data were determined using a Geographical Information System (GIS) and a Digital Elevation Model. "Little Ice Age" maximum extent for a total of 233 glaciers comprising an overall glacier area of about 290 km2 was mapped. Mean length of the centreline was calculated to 1.6 km. Until AD 2003, the area and length shrank by 35% and 34%, respectively, compared with the maximum "Little Ice Age" extent.


2018 ◽  
Vol 31 ◽  
pp. 12004
Author(s):  
Amar Sharaf Eldin Khair ◽  
Purwanto ◽  
Henna RyaSunoko ◽  
Omer Adam Abdullah

Spatial analysis is considered as one of the most important science for identifying the most appropriate site for industrialization and also to alleviate the environmental ramifications caused by factories. This study aims at analyzing the Assalaya sugarcane factory site by the use of spatial analysis to determine whether it has ramification on the White Nile River. The methodology employed for this study is Global Position System (GPS) to identify the coordinate system of the study phenomena and other relative factors. The study will also make use Geographical Information System (GIS) to implement the spatial analysis. Satellite data (LandsatDem-Digital Elevation Model) will be considered for the study area and factory in identifying the consequences by analyzing the location of the factory through several features such as hydrological, contour line and geological analysis. Data analysis reveals that the factory site is inappropriate and according to observation on the ground it has consequences on the White Nile River. Based on the finding, the study recommended some suggestions to avoid the aftermath of any factory in general. We have to take advantage of this new technological method to aid in selecting most apt locations for industries that will create an ambient environment.


2014 ◽  
Vol 571-572 ◽  
pp. 792-795
Author(s):  
Xiao Qing Zhang ◽  
Kun Hua Wu

Floods usually cause large-scale loss of human life and wide spread damage to properties. Determining flood zone is the core of flood damage assessment and flood control decision. The aim of this paper is to delineate the flood inundation area and estimate economic losses arising from flood using the digital elevation model data and geographic information system techniques. Flood extent estimation showed that digital elevation model data is very precious to model inundation, however, in order to be spatially explicit flood model, high resolution DEM is necessary. Finally, Analyses for the submergence area calculation accuracy.


2002 ◽  
Vol 34 ◽  
pp. 355-361 ◽  
Author(s):  
Frank Paul ◽  
Andreas Kääb ◽  
Max Maisch ◽  
Tobias Kellenberger ◽  
Wilfried Haeberli

AbstractA new Swiss glacier inventory is to be compiled from satellite data for the year 2000. The study presented here describes two major tasks: an accuracy assessment of different methods for glacier classification with Landsat Thematic Mapper (TM) data and a digital elevation model (DEM); the geographical information system (GIS)-based methods for automatic extraction of individual glaciers from classified satellite data and the computation of three-dimensional glacier parameters (such as minimum, maximum and median elevation or slope and orientation) by fusion with a DEM. First results obtained by these methods are presented in Part II of this paper (Kääb and others, 2002). Thresholding of a ratio image from TM4 and TM5 reveals the best-suited glacier map. The computation of glacier parameters in a GIS environment is efficient and suitable for worldwide application. The methods developed contribute to the U. S. Geological Survey-led Global Land Ice Measurements from Space (GLIMS) project which is currently compiling a global inventory of land ice masses within the framework of global glacier monitoring (Haeberli and others, 2000).


1989 ◽  
Vol 13 ◽  
pp. 56-63 ◽  
Author(s):  
K. Elder ◽  
J. Dozier ◽  
J. Michaelsen

Distribution of snow-water equivalence (SWE) in the Emerald Lake watershed located in Sequoia National Park, California, U.S.A, was examined during the 1987 water year. Elevations at this site range from 2780 to 3416 m a.s.l., and the total watershed area is about 122 ha. A stratified sampling scheme was evaluated by identifying and mapping zones of similar snow properties, based on topographic parameters that account for variations in both accumulation and ablation of snow. Elevation, slope, and radiation values calculated from a digital elevation model were used to identify these zones. Field measurements of SWE were combined with characteristics of the sample locations and clustered to identify similar classes of SWE. The entire basin was then partitioned into zones for each set of survey data. The topographic parameters of the basin used in classification, namely slope and elevation, are constant in time and did not change between survey dates. The radiation data showed temporal variability providing a physically justified basis for changes in SWE distribution through time. Although results do not identify which of the classification attempts is superior to the others, net radiation is clearly of primary importance, and slope and elevation appear to be important to a lesser degree. The peak accumulation for the 1987 water year was 598 mm SWE, which is about half the 50 year mean.


2016 ◽  
Vol 7 (15) ◽  
pp. 87
Author(s):  
Antonia Spanò ◽  
Filiberto Chiabrando ◽  
Livio Dezzani ◽  
Antonio Prencipe

<p>The reconstructive study of the urban arrangement of Susa in the 4th century arose from the intention to exploit some resources derived from local studies, and survey activities, fulfilled by innovative methods from which the modelling of architectural heritage (AH) and virtual reconstructions are derived.  The digital Segusio presented in this paper is the result of intensive discussion and exchange of data and information during the urban landscape documentation activities, and due to the technology of virtual model generation, making it possible to recreate the charm of an ancient landscape. The land survey has been accomplished using aerial and terrestrial acquisition systems, mainly through digital photogrammetry from UAV (Unmanned Aerial Vehicle) and terrestrial laser scanning.  Results obtained from both the methods have been integrated into the medium scale geographical data from the regional map repository, and some processing and visualization supported by GIS (Geographical Information System) has been achieved. Subsequently, with the help of accurate and detailed DEM (Digital Elevation Model) and other architectural scale models related to the ancient heritage, this ancient landscape was modelled. The integration of the history of this city with digital and multimedia resources will be offered to the public in the city museum housed in the restored castle of Maria Adelaide (Savoy dynasty, 11th century), which stands in the place where the acropolis of the city of Susa lay in ancient times.</p>


Author(s):  
Z. Ismail ◽  
M. F. Abdul Khanan ◽  
F. Z. Omar ◽  
M. Z. Abdul Rahman ◽  
M. R. Mohd Salleh

Light Detection and Ranging or LiDAR data is a data source for deriving digital terrain model while Digital Elevation Model or DEM is usable within Geographical Information System or GIS. The aim of this study is to evaluate the accuracy of LiDAR derived DEM generated based on different interpolation methods and slope classes. Initially, the study area is divided into three slope classes: (a) slope class one (0° – 5°), (b) slope class two (6° – 10°) and (c) slope class three (11° – 15°). Secondly, each slope class is tested using three distinctive interpolation methods: (a) Kriging, (b) Inverse Distance Weighting (IDW) and (c) Spline. Next, accuracy assessment is done based on field survey tachymetry data. The finding reveals that the overall Root Mean Square Error or RMSE for Kriging provided the lowest value of 0.727 m for both 0.5 m and 1 m spatial resolutions of oil palm area, followed by Spline with values of 0.734 m for 0.5 m spatial resolution and 0.747 m for spatial resolution of 1 m. Concurrently, IDW provided the highest RMSE value of 0.784 m for both spatial resolutions of 0.5 and 1 m. For rubber area, Spline provided the lowest RMSE value of 0.746 m for 0.5 m spatial resolution and 0.760 m for 1 m spatial resolution. The highest value of RMSE for rubber area is IDW with the value of 1.061 m for both spatial resolutions. Finally, Kriging gave the RMSE value of 0.790m for both spatial resolutions.


1989 ◽  
Vol 13 ◽  
pp. 56-63 ◽  
Author(s):  
K. Elder ◽  
J. Dozier ◽  
J. Michaelsen

Distribution of snow-water equivalence (SWE) in the Emerald Lake watershed located in Sequoia National Park, California, U.S.A, was examined during the 1987 water year. Elevations at this site range from 2780 to 3416 m a.s.l., and the total watershed area is about 122 ha. A stratified sampling scheme was evaluated by identifying and mapping zones of similar snow properties, based on topographic parameters that account for variations in both accumulation and ablation of snow. Elevation, slope, and radiation values calculated from a digital elevation model were used to identify these zones. Field measurements of SWE were combined with characteristics of the sample locations and clustered to identify similar classes of SWE. The entire basin was then partitioned into zones for each set of survey data. The topographic parameters of the basin used in classification, namely slope and elevation, are constant in time and did not change between survey dates. The radiation data showed temporal variability providing a physically justified basis for changes in SWE distribution through time. Although results do not identify which of the classification attempts is superior to the others, net radiation is clearly of primary importance, and slope and elevation appear to be important to a lesser degree. The peak accumulation for the 1987 water year was 598 mm SWE, which is about half the 50 year mean.


2011 ◽  
Vol 271-273 ◽  
pp. 404-409
Author(s):  
Xiao Gen Li ◽  
Zhi Quan Huang ◽  
Tong Jiang ◽  
An Ming Wang

High resolution DEM(Digital Elevation Model, DEM) is created based on original CAD terrain map (one reservoir as example). Then the article offers precision analysis、topographic factors analysis、visibility analysis、reservoir volume and submerging acreage computing. Then adopting GeoVRML technique is to implement the functions of WebGIS 、visualization and query of computing result、graph data visualization and reservoir region virtual scene roaming etc. The system implements deep administrative levels information diged and long-distance visualization expression. The result shows on the basic high resolution DEM to realize 3-Dimensional Visualization Analyse and calculation functions and compress the spatial data to release these data in the WebGIS(Web Geographical Information System, WebGIS) as well as.


2014 ◽  
Vol 14 (7) ◽  
pp. 1819-1833 ◽  
Author(s):  
A. Candela ◽  
G. Brigandì ◽  
G. T. Aronica

Abstract. In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall–runoff model, is presented. Rainfall–runoff modelling (R–R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service – Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R–R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.


Sign in / Sign up

Export Citation Format

Share Document