scholarly journals Occurrence, Seasonal Abundance, and Superparasitism of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae) as an Egg Parasitoid of the Spotted Lanternfly (Lycorma delicatula) in North America

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 79 ◽  
Author(s):  
Houping Liu

The occurrence of egg parasitoid Ooencyrtus kuvanae (Howard) (Hymenoptera: Encyrtidae) on its new host, the spotted lanternfly (Lycorma delicatula (White) (Hemiptera: Fulgoridae)), was surveyed at 4 study plots in 2016 and 10 additional plots in 2017 in Pennsylvania through field collection and laboratory incubation. O. kuvanae adults were found on L. delicatula egg mass surfaces at two plots (ODSouth and Lutz) in 2016, but at none in 2017. The results of laboratory incubation showed that O. kuvanae adults were only recovered from host eggs collected at plot ODSouth in 2016, with adults emerging between 22 April and 2 May 2016 at 22 ± 1 °C, 40% ± 5% relative humidity (RH), and a 16:8 h photoperiod (light/dark). The overall parasitism at this study plot was 6.0% by egg mass and 1.2% by egg. Two oviposition sites contained parasitized L. delicatula eggs, with 12.3% (9.5–15.0%) host egg masses and 3.1% (1.3–5.0%) host eggs utilized by the parasitoid. O. kuvanae parasitism by egg was significantly higher on oviposition site ODSouth #7 than on ODSouth #8. No O. kuvanae adults were reared out of field-collected host eggs from the 10 plots in 2017. Seasonal abundance and superparasitism of O. kuvanae was examined at plot ODSouth in 2017. O. kuvanae-parasitized L. delicatula eggs were found on all four oviposition sites based on field monitoring of parasitoid adult emergence, resulting in a parasitism of 35.4% (18.8–55.6%) by egg mass and 2.2% (0.5–3.9%) by egg. No significant difference in parasitism by egg was observed among oviposition sites. O. kuvanae adults emerged in the field between 2 May and 1 June 2017. Superparasitism was confirmed for O. kuvanae on L. delicatula eggs based on parasitoid production (1.0–3.3 adults/parasitized egg) and adult exit holes (1–3 exit holes/parasitized egg). As the first parasitoid recorded from L. delicatula in North America, O. kuvanae has the potential to become an important biological control agent for L. delicatula in North America, with its well-synchronized life history in the spring, century-long field establishment, superparasitism, and female-biased progeny population. L. delicatula complements the gypsy moth well as an alternative host for O. kuvanae in the field.


2003 ◽  
Vol 135 (1) ◽  
pp. 103-115 ◽  
Author(s):  
G.M.G. Zilahi-Balogh ◽  
L.M. Humble ◽  
A.B. Lamb ◽  
S.M. Salom ◽  
L.T. Kok

AbstractLaricobius nigrinus Fender, native to the Pacific Northwest, is being evaluated as a potential biological control agent of the hemlock woolly adelgid, Adelges tsugae Annand, in the eastern United States. Members of the genus Laricobius feed exclusively on adelgids. Adelges tsugae is found on hemlocks (Tsuga sp.) in North America and Asia, but is considered only a pest of eastern [Tsuga canadensis (L.) Carrière] and Carolina (Tsuga caroliniana Engelmann) hemlocks in eastern North America. This is the first detailed study of the life history of L. nigrinus and its interaction with A. tsugae. Results of a 2-year field study conducted in a seed orchard in British Columbia on the seasonal abundance of L. nigrinus and its prey, A. tsugae, revealed that (i) the sistens generation of A. tsugae matures 2-3 months earlier than previously reported in Virginia and Connecticut, (ii) no A. tsugae sexuparae were observed, which differs from findings in Virginia and Connecticut, (iii) L. nigrinus adults undergo an aestival diapause that coincides with diapausing first instar A. tsugae sistens, and (iv) oviposition and subsequent larval development of L. nigrinus coincides with oviposition by the A. tsugae sistens adults, indicating good synchrony between L. nigrinus and suitable prey stages of A. tsugae.



2019 ◽  
Vol 48 (6) ◽  
pp. 1270-1276 ◽  
Author(s):  
Robert Malek ◽  
Joe M Kaser ◽  
Hannah J Broadley ◽  
Juli Gould ◽  
Marco Ciolli ◽  
...  

Abstract The spotted lanternfly, Lycorma delicatula White (1845) (Hemiptera: Fulgoridae), is an invasive insect that was first reported in North America in Berks County, Pennsylvania, in 2014. It is a polyphagous phloem feeder that attacks over 70 plant species, threatening the agricultural, lumber, and ornamental industries of North America. Infestations of the pest have been reported in several U.S. counties, and a lack of endemic predators and parasitoids feeding on L. delicatula suggests a release from natural enemies in the invaded range. An egg-parasitoid Anastatus orientalis (Hymenoptera: Eupelmidae) was reported attacking L. delicatula at high rates in its native range and may play a key role in reducing its populations there. To better understand the foraging behavior of A. orientalis, a series of behavioral experiments were conducted to determine successful parasitism and behavioral responses to traces left by adult L. delicatula and to the oothecae which cover their eggs. Our results suggest that wasps detected chemical traces left by L. delicatula adults while walking on surfaces and exhibited a strong arrestment response. Moreover, wasps preferred to oviposit in egg masses with intact oothecae. The implications of these findings are herein discussed with regard to the exploitation of host kairomones by foraging wasps, as well as to its ability to overcome host structural defenses.



Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 665
Author(s):  
Lakpo Koku Agboyi ◽  
Babatoundé Ferdinand Rodolphe Layodé ◽  
Ken Okwae Fening ◽  
Patrick Beseh ◽  
Victor Attuquaye Clottey ◽  
...  

In response to the threat caused by the fall armyworm to African maize farmers, we conducted a series of field release studies with the egg parasitoid Telenomus remus in Ghana. Three releases of ≈15,000 individuals each were conducted in maize plots of 0.5 ha each in the major and minor rainy seasons of 2020, and compared to no-release control plots as well as to farmer-managed plots with chemical pest control. No egg mass parasitism was observed directly before the first field release. Egg mass parasitism reached 33% in the T. remus release plot in the major rainy season, while 72–100% of egg masses were parasitized in the minor rainy season, during which pest densities were much lower. However, no significant difference in egg mass parasitism was found among the T. remus release plots, the no-release control plots and the farmer-managed plots. Similarly, no significant decrease in larval numbers or plant damage was found in the T. remus release fields compared to the no-release plots, while lower leaf and tassel damage was observed in farmer-managed plots. Larval parasitism due to other parasitoids reached 18–42% in the major rainy season but was significantly lower in the minor rainy season, with no significant differences among treatments. We did not observe significant differences in cob damage or yield among the three treatments. However, the lack of any significant differences between the release and no-release plots, which may be attributed to parasitoid dispersal during the five weeks of observation, would require further studies to confirm. Interestingly, a single application of Emamectin benzoate did not significantly affect the parasitism rates of T. remus and, thus, merits further investigation in the context of developing IPM strategies against FAW.



2019 ◽  
Vol 113 (2) ◽  
pp. 1028-1032 ◽  
Author(s):  
Houping Liu ◽  
Richard J Hartlieb

Abstract The spatial distribution of Lycorma delicatula (White) egg masses on three species of trees were studied in Pennsylvania. Five tree-of-heaven, five black walnut, and one Siberian elm trees were felled in early spring 2019 to sample for egg masses. Each egg mass was marked for its cardinal direction, position in the tree, height above ground, and spread from the bole. A total of 214 egg masses were found on tree-of-heaven and black walnut, with 38.3, 29.4, 22.0, and 10.3% on the north, west, south, and east quadrant, respectively. No significant difference in cardinal direction was found for either species. Equal number of egg masses were found on branches and boles on tree-of-heaven. However, significantly more egg masses were found on branches (96.5%) compared to boles (3.5%) on black walnut. Egg masses were laid at 0.30–12.92 and 0.70–17.00 m above ground, with most on boles/higher branches and middle/lower branches for tree-of-heaven and black walnut, respectively. Significant effect of height above ground was found for black walnut, with more egg masses found at 4–6 m compared to 0–2, 12–14, and 14–16 m. Significant effect of spread from the bole was found for tree-of-heaven, with more egg masses found at 0–2 m compared to 2–4 and 4–6 m. The 24 egg masses on the Siberian elm were mostly found on east quadrant branches 0–2 m above ground and within 2 m from the bole. Variation in tree branching patterns and difference in egg mass distribution of other forest pests were discussed.



2003 ◽  
Vol 56 ◽  
pp. 51-55 ◽  
Author(s):  
D.C. Jones ◽  
T.M. Withers

Enoggera nassaui has been the key biological control agent of the eucalyptus tortoise beetle Paropsis charybdis since 1987 In 2001 a second egg parasitoid Neopolycystus insectifurax as well as an obligate hyperparasitoid of E nassaui Baeoanusia albifunicle were detected in New Zealand Monitoring of Eucalyptus nitens plantations in the central North Island revealed that 50 of P charybdis eggs in half the sites were parasitised by E nassaui in early summer However later in the season this was followed by a reduction to 10 parasitism by E nassaui the remaining 40 of parasitised eggs being hyperparasitised by B albifunicle Neopolycystus insectifurax parasitised an additional 35100 of eggs in late summer This indicates that while B albifunicle has the potential to severely reduce the effectiveness of E nassaui the new agent N insectifurax is a promising alternative



1981 ◽  
Vol 113 (7) ◽  
pp. 575-584 ◽  
Author(s):  
M. W. Brown ◽  
James L. Rosenberger ◽  
E. Alan Cameron

AbstractFour sampling methods for Ooencyrtus kuvanae (Howard) populations were compared for efficiency using coefficients of variation. On this basis, none of the sampling methods was uniformly superior to any other, but a cluster of 0.01 ha subplots was chosen as the best method because of the aggregation of both gypsy moth egg masses and parasitoids. From the estimated population variance per egg mass it was calculated that 150 egg masses should be sampled per plot to provide an error bound of 0.2 parasitoid per egg mass (α = 0.1). An analysis of variance indicated that variation among study areas was the largest source of variation, and that among day, within day, and plot configuration variation were significant. Estimates of parasitoid activity are most reliable during the period between 1300 and 1600 h EST. Activity of parasitoids was reduced on overcast days. In August, the distribution of O. kuvanae approximates that of the negative binomial but with too many individuals in the high frequency classes. In a compromise between cost and accuracy, the sampling scheme selected consists of thirty 0.01 ha subplots per plot sampled between 1300 and 1600 h EST on sunny days. This sampling scheme was found satisfactory using field evaluation.



2011 ◽  
Vol 11 ◽  
pp. 2330-2338 ◽  
Author(s):  
Stephen Chan Teck Leong ◽  
Roland Jui Heng Kueh

Seasonal population of the fruit-piercing mothsEudocimaspp. was monitored throughout the citrus growing seasons in a citrus orchard and in site adjacent to secondary forest from July 2007 to June 2009. The moth was detected practically throughout the year with activity lowest during the wet months (September-February) when fruits are still available and while highest during the dry months (May-June) which also coincided with the main fruiting season. The effects of annC24 horticultural mineral oil (HMO) on the citrus fruit damage caused by fruit-piecing moths was also determined. The percent fruit damage was significantly lowest (P≤0.05) in HMO-treated plots (8.4), followed by Dimethoate-treated plots (11.6) and untreated plots (22.5). However, there was no significant difference between HMO and Dimethoate treated plots indicating HMO is effective in reducing percent fruit damage.



2020 ◽  
Vol 113 (4) ◽  
pp. 1735-1740
Author(s):  
Md Arefur Rahman ◽  
Souvic Sarker ◽  
Eunhye Ham ◽  
Jun-Seok Lee ◽  
Un Taek Lim

Abstract The polyphagous predator Orius species is a dominant predator of thrips, mites, and aphids. Orius laevigatus (Fieber) is a well-known commercialized and effective biological control agent, whereas Orius minutus (L.) distributed widely over the world has not been commercialized. To assess potentials of developing O. minutus as a commercial biological control agent, we compared the biological parameters of O. minutus with O. laevigatus when reared on mixed stages of Tetranychus urticae Koch at 27.5°C. Nymphal development of O. laevigatus was shorter (11.30 d) than that of O. minutus (12.25 d), but there was no significant difference in survivorship between the two species. Also, no significant difference was found in either the preoviposition or oviposition periods, lifetime fecundity, or longevity between the two species. However, O. minutus eggs had a higher hatch rate (0.77) than O. laevigatus (0.71). In life table analysis, no difference was found in any parameters, i.e., R0, rm, λ, T, and DT, between O. laevigatus and O. minutus in two-tailed t-tests. In a predation bioassay, O. minutus consumed 1.39 times more adult T. urticae in 24 h than did O. laevigatus, although the predation rate on T. urticae eggs was similar between the two species. These results suggest that O. minutus native to Korea could be developed as a biological control agent against T. urticae.



Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 840
Author(s):  
Barbara Bittau ◽  
Maria Luisa Dindo ◽  
Giovanni Burgio ◽  
Giuseppino Sabbatini-Peverieri ◽  
Kim Alan Hoelmer ◽  
...  

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), a pest of Asian origin, has been causing severe damage to Italian agriculture. The application of classical biological control by the release of Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), an exotic egg parasitoid, appears to be one promising solution. In Italy, releases of T. japonicus in the field were authorized in 2020. In this study, some parameters that could influence the rearing of T. japonicus in insectaries were investigated. A significantly higher production of progeny was observed on host eggs stored at 6 °C (86.5%) compared to −24 °C (48.8%) for up to two months prior to exposure to parasitism. There were no significant differences in progeny production from single females in a vial provided with only one egg mass (83.2%) or 10 females inside a cage with 6 egg masses (83.9%). The exposure of parasitoids to refrigerated (6 °C) egg masses of H. halys for 72 h led to a significantly higher production of progeny (62.1%) compared to shorter exposures for 48 (44.0%) or 24 h (37.1%). A decline in production of progeny by the same female was detected between the first (62.1%) and the second parasitization (41.3%). Adult parasitoids stored at 16 °C for up to 90 days had an 87.1% survival rate, but a significant decrease in progeny production was detected. These parameters could be adjusted when rearing T. japonicus for specific aims such as the production of individuals for field release or colony maintenance.



Sign in / Sign up

Export Citation Format

Share Document