scholarly journals Characterisation of Physical and Mechanical Properties of Unthinned and Unpruned Plantation-Grown Eucalyptus nitens H.Deane & Maiden Lumber

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 194 ◽  
Author(s):  
Mohammad Derikvand ◽  
Nathan Kotlarewski ◽  
Michael Lee ◽  
Hui Jiao ◽  
Gregory Nolan

The use of fast-growing plantation eucalypt (i.e., pulpwood eucalypt) in the construction of high-value structural products has received special attention from the timber industry in Australia and worldwide. There is still, however, a significant lack of knowledge regarding the physical and mechanical properties of the lumber from such plantation resources as they are mainly being managed to produce woodchips. In this study, the physical and mechanical properties of lumber from a 16-year-old pulpwood Eucalyptus nitens H.Deane & Maiden resource from the northeast of Tasmania, Australia was evaluated. The tests were conducted on 318 small wood samples obtained from different logs harvested from the study site. The tested mechanical properties included bending modulus of elasticity (10,377.7 MPa) and modulus of rupture (53 MPa), shear strength parallel (5.5 MPa) and perpendicular to the grain (8.5 MPa), compressive strength parallel (42.8 MPa) and perpendicular to the grain (4.1 MPa), tensile strength perpendicular to the grain (3.4 MPa), impact bending (23.6 J/cm2), cleavage (1.6 kN) and Janka hardness (23.2 MPa). Simple linear regression models were developed using density and moisture content to predict the mechanical properties. The variations in the moisture content after conventional kiln drying within randomly selected samples in each test treatment were not high enough to significantly influence the mechanical properties. A relatively high variation in the density values was observed that showed significant correlations with the changes in the mechanical properties. The presence of knots increased the shear strength both parallel and perpendicular to the grain and significantly decreased the tensile strength of the lumber. The results of this study created a profile of material properties for the pulpwood E. nitens lumber that can be used for numerical modelling of any potential structural product from such a plantation resource.

2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2012 ◽  
Vol 506 ◽  
pp. 607-610 ◽  
Author(s):  
N. Thongjun ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Oil palm frond pulp (OPF) was blended with activated carbon for the purpose of active packaging in this preliminary study. It was aimed to investigate the effect of in-situ activated carbon on physical and mechanical properties of the pulp handsheets made from OPF. Testing of property performances of the resulted handsheets included density, moisture content, thickness swelling, folding, tensile strength, %elongation, stiffness, and modulus of rupture. Ultimately, the intention is to use for prospected active packaging for fresh produce. OPF pulp was prepared by the kraft process. The pulp stock was mixed with different proportions of activated carbon (0, 10, 20, and 30% w/w). The results showed that an increased proportion of activated carbon decreased density and thickness selling, but had no effect on moisture content.


2019 ◽  
Vol 69 (3) ◽  
pp. 205-209
Author(s):  
Sedigheh Kamali Moghadam ◽  
Mohammad Shamsian ◽  
Hosein Rezayi Shahri

Abstract The aim of this research is to show useful utilization of agricultural residues such as cotton stalks and branches of pistachio, pomegranate, and Haloxylon species with recycled plastic in manufacturing wood–plastic composite (WPC) panels. Wood–plastic panels were made from a combination of agricultural residues (as natural fiber) and recycled plastic (as resin) at 50 percent, and 60 percent by weight fiber loading. Density and dimensions of the panels were 0.61 g/cm3 and 350 by 350 by 14 mm, respectively. Physical and mechanical properties of the panels including thickness swelling, water absorption, static bending (modulus of rupture and modulus of elasticity ), and internal bond were investigated. Physical and mechanical properties of the WPC panels decreased with an increase in fiber content from 50 percent to 60 percent. Physical and mechanical properties of samples made with 50 percent plastic were higher than samples with 40 percent plastic. The best values of physical and mechanical properties of the WPC panels were found at 10 percent and 5 percent Haloxylon particle loading, respectively. The highest values of mechanical properties of WPC panels were found at 50 percent plastic and 5 percent Haloxylon particle loading.


2016 ◽  
Vol 842 ◽  
pp. 103-128
Author(s):  
Kang Chiang Liew ◽  
Singan Grace

Utilisation of forest plantation species such as Acacia hybrid has been used in wood-based industry as an alternative to solid wood that was usually attained from natural forest. While, the under-utilised species such as Mangifera sp. is not often been used as raw material for wood products, in this study, laminated veneer lumber (LVL) has been produced from Acacia hybrid and Mangifera sp. The physical and mechanical properties of LVL were determined and compared. For physical testing, the range value of moisture content was 9.41% to 14.56%, Density was 487.90 kg/m3 to 699.10 kg/m3, thickness swelling was between 0.20% to 6.05%, water absorption between 32.71% to 91.25%, and rate of delamination from 0% to 100%. Mangifera sp. LVL has higher moisture content, rate of delamination, and water absorbency. In mechanical testing, it is been found that Acacia hybrid LVL has overall higher strength compared to Mangifera sp. LVL, in terms of static bending strength (MOR and MOE), shear strength, and compression strength. Range of value for MOR was between 10.27 N/mm2 to 129.99 N/mm2, MOE between 1138 N/mm2 to 16472.93 N/mm2, shear strength between 0.43 N/mm2 to 3.40 N/mm2, and compression between 139.45 N/mm2 to 6749.74 N/mm2. For physical testing, the overall result of p-value for moisture content, water absorption, and delamination were significant at p ≤ 0.05, while density and thickness swelling were not significant at p ≥ 0.05. For overall result, the p-value for static bending strength (MOR and MOE) was significant at p ≤ 0.05 while for shear strength and compression strength were not significant at p ≥ 0.05.


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3103-3111
Author(s):  
Ricardo Acosta ◽  
Jorge A. Montoya ◽  
Goran Schmidt

Thermal treatments applied to lignocellulosic materials were found to induce internal chemical reactions, which modified the physical and mechanical properties and dimensional stability of the material. A 3-year-old basal section of bamboo (Guadua angustifolia Kunth), with no nodes and no skin, was subjected to a thermal treatment at temperatures which ranged from 160 to 200 °C for 1 to 4 h. The tensile stiffness showed a slight increase with temperature and time, while the tensile strength showed a notable increase at 160 °C for 2 h. There was a 5% difference in the equilibrium moisture content at 80% relative humidity between the untreated samples and the 200 °C, 4 h treatment.


Sign in / Sign up

Export Citation Format

Share Document