scholarly journals Two Centuries-Long Streamflow Reconstruction Inferred from Tree Rings for the Middle Reaches of the Weihe River in Central China

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 208 ◽  
Author(s):  
Na Liu ◽  
Guang Bao ◽  
Yu Liu ◽  
Hans W. Linderholm

Water source is one of the most important concerns for regional society and economy development, especially in the Weihe River basin which is located in the marginal zone of the Asian summer monsoon. Due to the weakness of short instrumental records, the variations of streamflow during the long-term natural background are difficult to access. Herein, the average June–July streamflow variability in the middle reaches of the Weihe River was identified based on tree-ring width indices of Chines pine (Pinus tabulaeformis Carr.) from the northern slope of the Qinling Mountains in central China. Our model could explain the variance of 39.3% in the observed streamflow period from 1940 to 1970 AD. There were 30 extremely low years and 26 high years which occurred in our reconstruction for the effective span of 1820 to 2005. Several common dryness and wetness periods appeared in this reconstructed streamflow, and other tree-ring precipitation series suggested the coherence of hydroclimate fluctuation over the Weihe River basin. Some significant peaks in cycles implied the linkages of natural forcing on the average June–July streamflow of the Weihe River, such as the Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO) activities. Spatial correlation results between streamflow and sea surface temperature in the northern Pacific Ocean, as well as extremely low/high years responding to the El Niño/La Nina events, supported the teleconnections. The current 186-year streamflow reconstruction placed regional twentieth-century drought and moisture events in a long-term perspective in the Weihe River basin, and provided useful information for regional water resource safety and forest management, particularly under climate warming conditions.

IAWA Journal ◽  
1999 ◽  
Vol 20 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Amalava Bhattacharyya ◽  
Ram R. Yadav

There are several reports which indicate that the c1imate over the Himalayan region is linked both with the monsoon variation on the Indian subcontinent and in the whole of South-East Asia as well as with the El-Niño/Southem Oscillation. To understand the behaviour ofthese c1imatic phenomena we need long-term high-resolution c1imatic records which are in generallacking in this part of the globe. Tree-ring studies have therefore been taken up in the tropical and Himalayan region in India to develop millennium-long c1imatic reconstructions.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 886
Author(s):  
Abdul Azim Amirudin ◽  
Ester Salimun ◽  
Fredolin Tangang ◽  
Liew Juneng ◽  
Muhamad Zuhairi

This study investigates the individual and combined impacts of El Niño and the positive Indian Ocean Dipole (IOD) on the Southeast Asia (SEA) rainfall variability. Using composite and partial correlation techniques, it is shown that both inter-annual events have individually distinct impacts on the SEA rainfall anomaly distribution. The results showed that the impacts of the co-occurrence of El Niño and IOD events are significant compared to the individual effects of pure El Niño or pure IOD. During June-July-August and September-October-November, the individual impacts of the pure El Niño and IOD events are similar but less significant. Both events caused negative impacts over the southern part of SEA during June-July-August (JJA) and propagated northeastward/eastward during September-October-November (SON). Thus, there are significant negative impacts over the southern part of SEA during the co-occurrence of both events. The differential impacts on the anomalous rainfall patterns are due to the changes in the sea surface temperature (SST) surrounding the region. Additionally, the differences are also related to the anomalous regional atmospheric circulations that interact with the regional SST. The anomalous Walker circulation that connects the Indian Ocean and tropical Pacific Ocean also plays a significant role in determining the regional anomalous rainfall patterns.


2021 ◽  
Vol 775 ◽  
pp. 145689
Author(s):  
Gabriela Jorge-Romero ◽  
Eleonora Celentano ◽  
Diego Lercari ◽  
Leonardo Ortega ◽  
Juan A. Licandro ◽  
...  

2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170315 ◽  
Author(s):  
Cleiton B. Eller ◽  
Lucy Rowland ◽  
Rafael S. Oliveira ◽  
Paulo R. L. Bittencourt ◽  
Fernanda V. Barros ◽  
...  

The current generation of dynamic global vegetation models (DGVMs) lacks a mechanistic representation of vegetation responses to soil drought, impairing their ability to accurately predict Earth system responses to future climate scenarios and climatic anomalies, such as El Niño events. We propose a simple numerical approach to model plant responses to drought coupling stomatal optimality theory and plant hydraulics that can be used in dynamic global vegetation models (DGVMs). The model is validated against stand-scale forest transpiration ( E ) observations from a long-term soil drought experiment and used to predict the response of three Amazonian forest sites to climatic anomalies during the twentieth century. We show that our stomatal optimization model produces realistic stomatal responses to environmental conditions and can accurately simulate how tropical forest E responds to seasonal, and even long-term soil drought. Our model predicts a stronger cumulative effect of climatic anomalies in Amazon forest sites exposed to soil drought during El Niño years than can be captured by alternative empirical drought representation schemes. The contrasting responses between our model and empirical drought factors highlight the utility of hydraulically-based stomatal optimization models to represent vegetation responses to drought and climatic anomalies in DGVMs. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2020 ◽  
Author(s):  
Saginela Ravindra Babu ◽  
Madineni Venkat Ratnam ◽  
Ghouse Basha ◽  
Shantanu Kumar Pani ◽  
Neng-Huei Lin

Abstract. In this work, the detailed changes in the structure, dynamics and trace gases within the Asian summer monsoon anticyclone (ASMA) during extreme El Niño of 2015–16 is delineated by using Aura Microwave Limb Sounder (MLS) measurements, COSMIC Radio Occultation (RO) temperature, and NCEP reanalysis products. We have considered the individual months of July and August 2015 for the present study. The results show that the ASMA structure was quite different in 2015 as compared to the long-term (2005–2014) mean. In July, the spatial extension of the ASMA shows larger than the long-term mean in all the regions except over northeastern Asia, where, it exhibits a strong southward shift in its position. The ASMA splits into two and western Pacific mode is evident in August. Interestingly, the subtropical westerly jet (STJ) shifted southward from its normal position over northeastern Asia as resulted mid latitude air moved southward in 2015. Intense Rossby wave breaking events along with STJ are also found in July 2015. Due to these dynamical changes in the ASMA, pronounced changes in the ASMA tracers are noticed in 2015 compared to the long-term mean. A 30 % (20 %) decrease in carbon monoxide (water vapor) at 100 hPa is observed in July over most of the ASMA region, whereas in August the drop is strongly concentrated in the edges of the ASMA. Prominent increase of O3 (> 40 %) at 100 hPa is clearly evident within the ASMA in July, whereas in August the increase is strongly located (even at 121 hPa) over the western edges of the ASMA. Further, the temperature around the tropopause shows significant positive anomalies (~ 5 K) within the ASMA in 2015. Overall, warming of the tropopause region due to the increased O3 weakens the anticyclone and further supported the weaker ASMA in 2015 reported by previous studies.


Sign in / Sign up

Export Citation Format

Share Document