scholarly journals Reconstruction of June–July Temperatures Based on a 233 Year Tree-Ring of Picea jezoensis var. microsperma

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 416 ◽  
Author(s):  
Yangao Jiang ◽  
Xue Yuan ◽  
Junhui Zhang ◽  
Shijie Han ◽  
Zhenju Chen ◽  
...  

In this study, ring-width chronology of Picea jezoensis var. microsperma from the Changbai Mountain (CBM) area, Northeast China, was constructed. Growth/climate responses suggested that mean maximum temperature (Tmax) was the limiting factor affecting radial growth of PJ trees in the study region. According to the correlation analysis between the ring-width index and meteorological data, a June–July mean maximum temperature (Tmax6–7) series between 1772 and 2004 was reconstructed by using the standard chronology. For the calibration period (1959–2004), the explained variance of the reconstruction was 41.6%. During the last 233 years, there were 36 warm years and 34 cold years, accounting for 15.5% and 14.7% of the total reconstruction years, respectively. Cold periods occurred in 1899–1913, 1955–1970, and 1975–1989, while warm periods occurred in 1881–1888. The reconstructed temperature series corresponded to the historical disaster records of extreme climatic events (e.g., drought and flood disasters) in this area. Comparisons with other temperature reconstructions from surrounding areas and spatial correlation analysis between the gridded temperature data and reconstruction series indicated that the regional climatic variations were well captured by the reconstruction. In addition, multi-taper method spectral analysis indicated the existence of significant periodicities in the reconstructed series. The significant spatial correlations between the reconstructed temperature series and the El Niño–Southern Oscillation (ENSO), solar activity, and Pacific Decadal Oscillation (PDO) suggested that the temperature in the CBM area indicated both local-regional climate signals and global-scale climate changes.

2020 ◽  
Author(s):  
Alexandre Florent Nolin ◽  
Jacques C. Tardif ◽  
France Conciatori ◽  
David M. Meko ◽  
Yves Bergeron

<p>The streamflow regimes of eastern boreal Canada are snow-melt and ice-melt driven with the highest flows occurring in spring. Over the last few decades, a positive streamflow trend has been observed, with increasing severity and frequency of spring flooding. Further changes in flood dynamics are projected as a consequence of global climate change. The validity of projections is restricted by the lack of long and spatially well-replicated observations. High-resolution proxy records are needed to better understand the natural range of variability in spring runoff and associated atmospheric controls.</p><p>Recent research has shown that riparian black ash trees (Fraxinus nigra Marsh.) exposed to periodic submersion produce “flood rings” whose earlywood cross-sectional vessel area is linearly associated with the severity of flooding. Twelve continuous chronologies of ring width and earlywood vessel anatomy were developed for Lake Duparquet to extend the record of Harricana River mean spring flow. A visually determined index of flood rings was also developed to determine i) the spatial coherency of the spring flood signal and ii) the coherency of the flood signal among natural, regulated and unflooded rivers.</p><p>The reconstruction spans the period 1770-2016 and captures more than 65% of the variance of Harricana river spring flow. Trend analysis indicates an increase in both magnitude and frequency of the major floods starting at the end of the Little Ice Age (LIA, 1850-1890), with highest peaks after 1950. Time-frequency analysis shows non-stationarity: a stable 30-year periodicity during the LIA is replaced by a decadal pattern starting around 1850, and evolves into a more high-frequency pattern after 1930. The signal is strongly coherent between watersheds for natural rivers and weaker for regulated basins. Field correlations with gridded climate data indicate the broad spatially coherent pattern of spring high flows across much of central/eastern north Canada is positively associated with April-May precipitation and snow cover, and negatively associated with March-April maximum temperature.</p><p>These large-scale associations support atmospheric forcing of inter-annual hydroclimatic variability. While the Artic and North Atlantic Oscillations have previously been found to influence winter and spring climate conditions in eastern Quebec, our results contrast with a significant negative association with El-Niño Southern Oscillation from January to May, and the Pacific Decadal Oscillation from December to February. In Lake Duparquet, warm and wet air from Pacific-South Ocean (El-Niño) are associated with early spring and small floods, while cold and dry air masses (La-Niña) correlate to late thaw and high floods in spring. The association with sea surface temperature and 200mb geopotential field heights reveal a clear atmospheric connection between eastern north boreal Canada and the tropical Pacific Ocean.</p><p>The novel application of wood-cell anatomy to hydroclimatology underscores an increase in flood frequency and severity since the end of the 18<sup>th</sup> century in northeastern Canada. More broadly, the application highlights how analysis of tree rings from riparian trees can be used to extend the flood history of boreal rivers.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Sugam Aryal ◽  
Narayan Prasad Gaire ◽  
Nawa Raj Pokhrel ◽  
Prabina Rana ◽  
Basant Sharma ◽  
...  

The Himalayan region has already witnessed profound climate changes detectable in the cryosphere and the hydrological cycle, already resulting in drastic socio-economic impacts. We developed a 619-yea-long tree-ring-width chronology from the central Nepal Himalaya, spanning the period 1399–2017 CE. However, due to low replication of the early part of the chronology, only the section after 1600 CE was used for climate reconstruction. Proxy climate relationships indicate that temperature conditions during spring (March–May) are the main forcing factor for tree growth of Tsuga dumosa at the study site. We developed a robust climate reconstruction model and reconstructed spring temperatures for the period 1600–2017 CE. Our reconstruction showed cooler conditions during 1658–1681 CE, 1705–1722 CE, 1753–1773 CE, 1796–1874 CE, 1900–1936 CE, and 1973 CE. Periods with comparably warmer conditions occurred in 1600–1625 CE, 1633–1657 CE, 1682–1704 CE, 1740–1752 CE, 1779–1795 CE, 1936–1945 CE, 1956–1972 CE, and at the beginning of the 21st century. Tropical volcanic eruptions showed only a sporadic impact on the reconstructed temperature. Also, no consistent temperature trend was evident since 1600 CE. Our temperature reconstruction showed positive teleconnections with March–May averaged gridded temperature data for far west Nepal and adjacent areas in Northwest India and on the Southwest Tibetan plateau. We found spectral periodicities of 2.75–4 and 40–65 years frequencies in our temperature reconstruction, indicating that past climate variability in central Nepal might have been influenced by large-scale climate modes, like the Atlantic Multi-decadal Oscillation, the North Atlantic Oscillation, and the El Niño-Southern Oscillation.


2020 ◽  
Vol 21 (9) ◽  
Author(s):  
Pichit Lumyai ◽  
KITSADAPAN PALAKIT ◽  
KHWANCHAI DUANGSATHAPORN ◽  
KOBSAK WANTHONGCHAI

Abstract. Lumyai P, Palakit K, Suangsathaporn K, Wanthongchai K. 2020. A 324-years temperature reconstruction from Pinus latteri Mason at highland in Chiang Mai Province, Thailand. Biodiversitas 21: 3938-3945.  The objective of this study was to investigate the relationship between the growth of Pinus latteri and climate data in Chiang Mai Province, Thailand. Dendrochronological techniques were used to analyze 35 sample cores. The cross dated ring width data could be extended back for up to 324 years (1692-2015). The relationship between ring-width index and climate data indicated a significant correlation (p < 0.01) with the monthly rainfall in January, monthly temperature in August and September, extreme maximum temperature in August and mean maximum temperature in March and August. The reconstructed average monthly temperature in August was estimated at around  27.35 °C, a warming period could have occurred in 1694-1702, 1834-1844, 1848-1866, 1873-1876, 1884-1890, 1896-1902, 1911-1927, 1942-1958, and 1986-1990, with cooling periods occurring in 1703-1722, 1739-1752, 1865-1872, 1877-1883, 1891-1895, 1903-1910, 1928-1941, 1959-1961, and 1968-1970, which could explain the high fluctuations in temperature. Periods in the range 2.1-2.5, 10.1 , and 13.5 years were found to be common with the variations in  El Niño-Southern Oscillation. In conclusion, the pine growth information can be used to monitor the variations in climate in Thailand.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 674 ◽  
Author(s):  
Jian Yu ◽  
Sher Shah ◽  
Guang Zhou ◽  
Zhenzhao Xu ◽  
Qijing Liu

We developed two tree-ring width chronologies of Mongolian Scots pine (Pinus sylvestris var. mongolica) from the low elevation forest of the northern Daxing’anling Mountains of Inner Mongolia. Although the two chronologies come from different sampling sites, significant correlations existed among the chronologies (r = 0.318), and the first principal component (PC1) accounted for 65.9% of total variance over their common period 1792–2016. Climate-growth correlation analysis revealed that the previous June and July Palmer drought severity index (PDSIp6-7) was the main climatic factor controlling tree-ring growth. Using a linear regression model, we reconstructed the PDSIp6-7 for the past 225 years (1792–2016). The reconstruction satisfied required statistical calibration and validation tests, and represented 38.6% of the PDSI variance recorded by instruments over the period 1955–2016. Six wet and five dry periods were revealed during these 225 years. The drought of 1903–1927 was the most severe drought in the study area in the last 225 years. Comparison with other tree-ring-based moisture-sensitive sequences from nearby regions confirmed a high degree of confidence in our reconstruction. The results of a spatial climate correlation analysis with a gridded PDSI dataset revealed that our reconstructions contained strong regional drought signals for the southern Stanovoy Range and the northern Daxing’anling Mountains. The power spectrum revealed the existence of significant frequency cycles, which may be linked to large-scale atmospheric-oceanic variability, such as the El Niño-Southern Oscillation, solar activity, and the North Atlantic Oscillation.


2013 ◽  
Vol 80 (2) ◽  
pp. 167-179 ◽  
Author(s):  
Trevor J. Porter ◽  
Michael F.J. Pisaric ◽  
Steven V. Kokelj ◽  
Peter deMontigny

We present a reconstruction of June–July minimum temperatures since AD 1245 for the Mackenzie Delta region based on a 29-site network of white spruce (Picea glauca) ring-width series. Most but not all trees experienced a divergent temperature–growth response, similar to the divergence that has affected other white spruce trees across Yukon and Alaska. However, divergence in the study region began as early as AD 1900 and we have documented our methods to avoid including divergent signals in the reconstruction. Calibration/verification testing based on local temperature data, and multi-century coherence with nearby and large-scale temperature proxy records, confirm that our reconstruction is robust. The reconstruction shows cool conditions in the late 13th, early 18th and early 19th centuries, corresponding with solar minima and increased volcanism. These cool periods are interrupted by warm periods consistent with early to mid-20th century warmth. The late 20th century is the warmest interval, and the last decade is estimated to be 1.4°C warmer than any decade before the mid-20th century. The reconstructed climate history corroborates other proxy-based inferences and supports the notion that high-latitude regions such as the Mackenzie Delta have experienced rapid warming in recent decades that is exceptional in the last eight centuries.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 772 ◽  
Author(s):  
Sineenart Preechamart ◽  
Nathsuda Pumijumnong ◽  
Paramate Payomrat ◽  
Supaporn Buajan

We developed two tree-ring chronologies of teak (Tectona grandis L.f.) from Mae Tuen (462-year, 1555–2016) and Umphang (165-year, 1852–2016) in Tak province, northwestern Thailand. The chronologies were based on 67 and 71 living teak trees, respectively. We used crossdating methods to check and verify the tree-ring width data and tree-ring chronology construction using the ARSTAN program. In this study, the two teak tree-ring chronologies from two different growth areas could not be crossdated. The relationship among these chronologies is, thus, relatively low (r = 0.33, n = 165, p < 0.01). This result shows that the growth of tree-ring structure from two sites can be affected by a variety of non-climatic patterns due to site variation, such as topography, nutrient, light, and internal factors. However, these chronologies have a significant positive correlation with rainfall, during the pre-monsoon season (April to May). As demonstrated by the spatial correlation patterns, these chronologies represent April to May rainfall, which was a limiting factor of teak growth from northwestern Thailand. While the difference in surface temperatures of the Indian Ocean Dipole (IOD) might not be affected by rainfall, its unstable relationship with the El Niño-Southern Oscillation (ENSO) was noted to have occurred.


2012 ◽  
Vol 8 (4) ◽  
pp. 3871-3900
Author(s):  
A. Coppola ◽  
G. Leonelli ◽  
M. C. Salvatore ◽  
M. Pelfini ◽  
C. Baroni

Abstract. Mountain climate is generally strongly conditioned by the site-specific topographic characteristics. Detailed reconstructions of climate parameters for pre-instrumental periods in these mountain areas, suffering of glacial retreat caused by recent global warming, are needed in the view of a better comprehension of the environmental dynamics. We present here the first reconstruction of early summer (June–July) mean temperature for the Adamello-Presanella Group (Central European Alps, 45°54'–46°19' N; 10°21'–10°53' E), one of the most glaciarized mountain Group of the Central Italian Alps. The reconstruction has been based on four larch tree-ring width chronologies derived from living trees sampled in four valleys surrounding the Group. The reconstruction spans from 1596 to 2004 and accounts for about 35% of the temperature variance. The statistical verification of the reconstruction demonstrates the positive skill of the tree-ring data set in tracking temperature variability, but a divergence is visible starting from about 1980 between actual and reconstructed temperature, which slightly underestimate instrumental data. An analysis of moving mean sensitivity over a time window of thirty years evidences a decrement of this parameter in recent times, which is likely related to the noticed divergence and indicates a recent more complacent response to climate of larch at the tree-line.


2020 ◽  
Vol 81 ◽  
pp. 1-14
Author(s):  
M Keyimu ◽  
Z Li ◽  
Y Zhao ◽  
Y Dong ◽  
B Fu ◽  
...  

Historical temperature reconstructions at high altitudes are still insufficient in southwestern China, which is considered one of the most sensitive areas to climate change in the world. Here we developed a tree ring-width chronology of Faxon fir Abies fargesii var. faxoniana at the upper timber line on Zhegu Mountain, Miyaluo Scenic Area, western Sichuan, China. The climate-tree growth relationship analysis indicated temperature as the dominant regulator on radial tree growth in this region. The reconstruction of aggregated maximum temperature (TMX) of autumn and winter for the period 1856-2016 was achieved with a linear regression model that accounted for 43.6% of the actual variability in the common time series (1954-2016). The reconstruction identified 4 warm periods and 3 cold periods. Similarities of warm and cold periods with previously published reconstructions from nearby sites indicated the reliability of our reconstruction. The significant positive correlation between TMX reconstruction and the Asian-Pacific Oscillation index and the Atlantic Multi-decadal Oscillation index suggested a linkage between large-scale climate circulations and the thermal variability at a multi-decadal scale on the western Sichuan Plateau. We also found that solar activity exerted a strong influence on decadal temperature variability in this region. The cold periods were matched well with historical large volcanic eruptions. Our results strengthen the historical climatic information in southwestern China and contribute to further understanding the regional thermal variability as well as its driving mechanism.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Liliana V. Belokopytova ◽  
Nivedita Mehrotra ◽  
Santosh K. Shah ◽  
...  

Improvement of dendrochronological crops yield reconstruction by separate application of earlywood and latewood width chronologies succeeded in rain-fed semiarid region. (1) Background: Tree-ring width chronologies have been successfully applied for crops yield reconstruction models. We propose application of separated earlywood and latewood width chronologies as possible predictors improving the fitness of reconstruction models. (2) Methods: The generalized yield series of main crops (spring wheat, spring barley, oats) were investigated in rain-fed and irrigated areas in semiarid steppes of South Siberia. Chronologies of earlywood, latewood, and total ring width of Siberian larch (Larix sibirica Ledeb.) growing in forest-steppe in the middle of the study area were tested as predictors of yield reconstruction models. (3) Results: In the rain-fed territory, separation of earlywood and latewood allowed increasing variation of yield explained by reconstruction model from 17.4 to 20.5%, whereas total climatic-driven component of variation was 41.5%. However, both tree-ring based models explained only 7.7% of yield variation in the irrigated territory (climate inclusion increased it to 34.8%). Low temperature sensitivity of larch growth was the main limitation of the model. A 240-year (1780–2019) history of crop failures and yield variation dynamics were estimated from the actual data and the best reconstruction model. (4) Conclusions: Presently in the study region, breeding of the environment-resistant crops varieties compensates the increase of temperature in the yield dynamics, preventing severe harvest losses. Tree-ring based reconstructions may help to understand and forecast response of the crops to the climatic variability, and also the probability of crop failures, particularly in the rain-fed territories.


Sign in / Sign up

Export Citation Format

Share Document