scholarly journals Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa bungei C.A.Mey. under Drought Stress

Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1117
Author(s):  
Wei Chen ◽  
Panpan Meng ◽  
Huan Feng ◽  
Chunyan Wang

Catalpa bungei C.A.Mey. is a common ornamental timber species. Its survival and growth are greatly affected by water scarcity in arid and semi-arid areas of Northwest China. Evidence suggests arbuscular mycorrhizal fungus (AMF) may improve plant drought resistance. However, there is limited information on the systematic effects of AMF on drought resistance in C. bungei seedlings. Here, a pot experiment was used to explore the effects of inoculation with the AMF Rhizophagus intraradices on the growth and physiological performance of C. bungei under different water treatment conditions. Three water levels and two mycorrhizal inoculation treatments were used with factorial design. The results showed that drought stress noticeably affected the growth and physiological performance of C. bungei seedlings. However, inoculation with R. intraradices significantly ameliorated the growth, and alleviated the effects of drought stress. The growth parameters of AMF-inoculated seedlings significantly increased regardless of water status. AMF changed the biomass allocation in seedlings by reducing the root mass ratio (RMR) and root/shoot ratio. AMF-inoculated seedlings displayed higher gas exchange parameters, photosynthetic pigment concentrations, specific leaf area (SLA), but lower specific leaf weight (SLW), regardless of water status. AMF alleviated drought-induced oxidative stress by attenuating the excess generation of reactive oxygen species (ROS), especially H2O2 and O2−, in leaves. Inoculation with AMF under drought stress also dramatically augmented indole-3-acetic acid (IAA) and gibberellins (GA3) levels and the IAA/abscisic acid (ABA) and GA3/ABA ratios, but reduced ABA and zeatin (ZT) levels in leaves. AMF symbiosis improved root morphology and promoted the absorption of nitrogen (N) and phosphorus (P) in seedlings. We conclude that inoculation with R. intraradices is potentially useful for afforestation and cultivation of C. bungei in Northwest China. Furthermore, AMF improved soil structure by increasing the glomalin-related soil protein (GRSP) contents and the proportion of macro-aggregates (0.25–0.5 mm) in the rhizosphere soil.

Author(s):  
Yanbo Hu ◽  
Wei Xie ◽  
Baodong Chen

Abstract Background Water shortage can limit plant growth, which can be ameliorated by arbuscular mycorrhizal (AM) symbiosis through physiological and metabolic regulations. Deciphering which physiological and metabolic processes are central for AM-mediated regulations is essential for applications of mycorrhizal biotechnology in dryland agriculture. Methodology In this study, the influence of AM symbiosis on growth performance, photosynthesis, and organ accumulation of key C and N metabolites were assessed by growing maize (Mo17, Lancaster Sure Crop) seedlings inoculated with or without AM fungus (Rhizophagus irregularis Schenck & Smith BGC AH01) under different water regimes in greenhouse. Results Drought stress reduced shoot growth, while AM symbiosis significantly improved growth performances, with significant changes of photochemical processes and organ concentration of the key metabolites. AM symbiosis increased root levels of the metabolites in ornithine cycle and unsaturation of fatty acids regardless of water conditions. Root putrescine (Put) concentration was higher in AM than non-inoculated (NM) plants under well-watered conditions; the conversion of Put via diamine oxidase to γ-aminobutyric acid (GABA) occurred in roots of AM plants under drought stress. Leaf concentration of Put, the tricarboxylic acids, and soluble sugars significantly increased in AM plants under drought stress, showing higher values compared to that of NM plants. Moreover, photosystem II efficiency and chlorophyll concentration were higher in AM than NM plants regardless of water status. Conclusion Fatty acid- and ornithine cycle-related metabolites along with soluble sugars, Put, and GABA were the key metabolites of AM-mediated regulations in response to drought stress.


2017 ◽  
Vol 45 (1) ◽  
pp. 220-224 ◽  
Author(s):  
Xiao-Qing TUO ◽  
Li HE ◽  
Ying-Ning ZOU

White clover is extremely susceptive to drought stress (DS), while it is not clear whether arbuscular mycorrhizal fungi (AMF) enhance drought tolerance of the plant. This study was carried out to evaluate effects of two AMF species, Funneliformis mosseae and Paraglomus occultum, on flavonoid, soluble protein, proline, and nutrient uptake in roots of white clover under well-watered (WW) and DS conditions. Root colonization by F. mosseae and P. occultum was heavily decreased by 7-week DS treatment. Mycorrhizal plants showed considerably greater biomass production in shoot, root, and total (shoot+root) than non-mycorrhizal plants, irrespective of soil water status. AMF inoculation led to significantly higher root soluble protein and proline accumulation under WW and DS and root flavonoid level under DS, regardless of AMF species. Root N, P, K and Cu concentrations were dramatically increased by mycorrhization under WW and DS, and root Ca, Mg, Fe, and Mn levels were significantly higher in AMF plants than in non-AMF plants under WW. It concluded that AMF strongly enhanced plant growth and drought tolerance of white clover by greater nutrient absorption and protective substances (soluble protein, proline, and flavonoid) accumulation.


2020 ◽  
Vol 48 (4) ◽  
pp. 1993-2005
Author(s):  
Chun-Yan LIU ◽  
Yu-Juan WANG ◽  
Qiang-Sheng WU ◽  
Tian-Yuan YANG ◽  
Kamil KUČA

A pot experiment was carried out to evaluate the response of leaf antioxidant enzyme systems to inoculation with arbuscular mycorrhizal fungus (AMF) Clariodeoglomus etunicatum in tea (Camellia sinensis cv. ‘Fuding Dabaicha’) seedlings under drought stress (DS). Root AMF colonization was significantly decreased after an eight-week soil drought treatment. Plant growth performance (plant height, stem diameter, leaf number and root biomass), leaf relative water content, and leaf water potential were notably decreased under DS conditions, whereas these variables exhibited significantly higher responses in mycorrhizal seedlings than in non-mycorrhizal seedlings. The DS treatment markedly increased leaf superoxide anion concentration but did not affect malondialdehyde content, whereas both were reasonably decreased by AMF colonization regardless of water status. The seedlings colonized by AMF showed substantially higher antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase, and ascorbate peroxidase than the non-AMF colonized seedlings under both well-watered and DS conditions. DS markedly upregulated the relative expression of CsSOD in both AMF and non-AMF seedlings and the relative expression of CsCAT in AMF seedlings. Meanwhile, AMF-colonized seedlings represent markedly higher relative expressions of CsSOD and CsCAT than non-AMF seedlings, irrespective of water status. It concludes that mycorrhizal tea plants had higher antioxidant enzyme activity and corresponding gene expression under DS, indicating a stronger ability to alleviate the oxidative damage of drought.


Author(s):  
Yinli Bi ◽  
Linlin Xie ◽  
Zhigang Wang ◽  
Kun Wang ◽  
Wenwen Liu ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi can successfully enhance photosynthesis (Pn) and plants growth in agricultural or grassland ecosystems. However, how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored. Therefore, this study’s objective was to assess the effect of AM fungi on apricot seedling physiology, within a specific time period, in northwest China. In 2010, an experimental field was established in Shaanxi Province, northwest China. The experimental treatments included two AM fungi inoculation levels (0 or 100 g of AM fungal inoculum per seedling), three shade levels (1900, 1100, and 550 µmol m−2 s−1), and three ages (1, 3, and 5 years) of transplantation. We examined growth, Pn, and morphological indicators of apricot (Prunus sibirica L.) seedling performances in 2011, 2013, and 2015. The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls. The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass. Generally, Pn, stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are also significantly higher in the mycorrhizal seedlings. Moreover, mycorrhizal seedlings with light shade (LS) have the highest Pn. WUE is increased in non-mycorrhizal seedlings because of the reduction in Tr, while Tr is increased in mycorrhizal seedlings with shade. There is a significant increase in the N, P, and K fractions detected in roots compared with shoots. This means that LS had apparent benefits for mycorrhizal seedlings. Our results also indicate that AM fungi, combined with LS, exert a positive effect on apricot behavior.


Sign in / Sign up

Export Citation Format

Share Document