scholarly journals Selection of Reference Genes for Normalization of Gene Expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae)

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Yu Bai ◽  
Ya-Nan Lv ◽  
Mei Zeng ◽  
Pei-Yao Jia ◽  
Hu-Na Lu ◽  
...  

Zygentoma occupies a key evolutionary position for understanding the evolution of insect metamorphosis but has received little attention in terms of genetic analysis. To develop functional genomic studies in this insect, we evaluated five candidate internal reference genes for quantitative RT-PCR (qPCR) studies from Thermobia domestica, a representative species of Zygentoma, including Actin 5C (Actin5C), Elongation factor-1 alpha (EF1A), Ribosome protein S26 (RPS26), Ribosome protein L32 (RPL32), and Superoxide dismutase 2 (SOD2), at different developmental stages, in various body parts, and under dsRNA microinjection and starvation stresses, using four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) and a comparative algorithm (RefFinder). Specific suitable reference genes were recommended across specific experimental conditions, and the combination of RPS26 and RPL32 was appropriate for all tested samples. Employing our selected reference gene combination, we investigated the gene expression pattern of Myoglianin (Myo), a crucial gene-regulating insect metamorphosis, in ametabolous T. domestica, and demonstrated the efficiency of RNA interference (RNAi) in firebrat nymphs. This study provides a basis for reliable quantitative studies of genes and greatly benefits evolutionary and functional genomics studies in Zygentoma.

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1217
Author(s):  
Tingting Zhou ◽  
Xiaoming Yang ◽  
Fangfang Fu ◽  
Guibin Wang ◽  
Fuliang Cao

Ginkgo biloba, a deciduous tree species in the Ginkgo family, has a long history of cultivation in China and is widely used in garden landscapes, medicine, food, and health products. However, few reports have focused on the systematic selection of optimal reference genes based on transcriptomic data in G. biloba. The purpose of our research was to select an internal reference gene suitable for different experimental conditions from thirteen candidate reference genes by the delta cycle threshold (ΔCt) method, geNorm, BestKeeper, NormFinder, and RefFinder programs. The reference genes were used for gene expression analyses of Ginkgo biloba. These results showed that elongation factor 1(EF1) and ubiquitin (UBI) were the best choices for samples of different ginkgo genotypes. The expression of UBI and HAS28 presented the most stable at different developmental stages of ginkgo, and EIF3I and RPII were considered as suitable reference genes in different tissues of ginkgo. For methyl jasmonate (MeJA) treatment, ACA and ACT were identified as the optimal reference genes. For cold stress treatment, RPII and EIF4E were chosen for the gene expression normalizations. HAS28 and GAPDH presented the most stable expression for the heat treatment. To validate the above results, a chalcone synthase gene (GbCHS) in ginkgo was amplified by quantitative real-time polymerase chain reaction (qRT-PCR). Our results provide different suitable reference genes for further gene expression studies in ginkgo.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 589
Author(s):  
Xin Yan ◽  
Yibo Zhang ◽  
Kangkang Xu ◽  
Yawei Wang ◽  
Wenjia Yang

The tomato leaf miner, Tuta absoluta is a destructive pest of tomato. The leaf-mining activities of its larvae can cause significant yield losses. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used to measure gene expression, and the selection of stable reference genes for calibration and standardization is critical for accurate use of RT-qPCR. We studied the stable expression of nine common housekeeping genes in T. absoluta. These were examined at different developmental stages, in larval tissues, as well as those induced by exposure to 20E and insecticides. Four dedicated algorithms (geNorm, BestKeeper, NormFinder, and ΔCt method) and online tool (RefFinder) were used to analyze and rank the tested reference genes. Based on the standardized gene expression data of target gene ecdysone receptor (EcR), the applicability of specific reference genes was verified. The results clarify that the optimal internal reference genes vary greatly under different experimental conditions. GAPDH and RPS11 were the best reference genes for developmental stages; RPL28 and RPL10 for different tissues; EF1α and RPL28 for 20E treatment; EF1α and RPL7A for insecticide treatments. The most suitable reference genes in all experimental conditions are EF1α and RPL28.


2022 ◽  
Vol 12 ◽  
Author(s):  
Haiyan Fu ◽  
Tubiao Huang ◽  
Cheng Yin ◽  
Zhenhua Xu ◽  
Chao Li ◽  
...  

Bradysia odoriphaga (Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling B. odoriphaga. However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in B. odoriphaga, gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [elongation factor 1α (EF-1α), actin2 (ACT), elongation factor 2α (EF-2α), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein S3 (RPS3), ubiquitin-conjugating enzyme (UBC), and α-tubulin (TUB)] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and ΔCt) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were RPL10 and ACT across phoxim; ACT and TUB across chlorpyrifos and chlorfluazuron; EF1α and TUB across imidacloprid; EF1α and EF2α across developmental stages; RPL10 and TUB across larvae; EF1α and ACT across tissues, and ACT and G6PDH across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on B. odoriphaga gene function under insecticides stress.


Genome ◽  
2018 ◽  
Vol 61 (5) ◽  
pp. 349-358 ◽  
Author(s):  
Yanchun You ◽  
Miao Xie ◽  
Liette Vasseur ◽  
Minsheng You

Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.


2020 ◽  
Vol 65 (4) ◽  
pp. 837-842 ◽  
Author(s):  
Elżbieta Łopieńska-Biernat ◽  
Robert Stryiński ◽  
Łukasz Paukszto ◽  
Jan Paweł Jastrzębski ◽  
Karol Makowczenko

Abstract Background Anisakis simplex s. s. is a parasitic nematode with a complex life cycle in which humans can become accidental hosts by consuming raw or not fully cooked fish containing L3 larvae. The growing popularity of raw fish dishes has contributed to an increase in the incidence of anisakiasis, which has spurred scientific efforts to develop new methods for diagnosing and treating the disease and also to investigate the gene expression at different developmental stages of this parasite. The identification of reference genes suitable for the normalization of RT-qPCR data has not been studied with respect to A. simplex s. s. Methods In the present study, eight candidate reference genes were analyzed in A. simplex s. s. at two different developmental stages: L3 and L4. The expression stability of these genes was assessed by geNorm and NormFinder softwares. Results In general, our results identified translation elongation factor 1α (ef-1α) and peptidyl-prolyl isomerase 12 (ppi12) as the most stable genes in L3 and L4 developmental stages of A. simplex s. s. Validation of the selected reference genes was performed by profiling the expression of the nuclear hormone receptor gene (nhr 48) in different developmental stages. Conclusions This first analysis selecting suitable reference genes for RT-qPCR in A. simplex s. s. will facilitate future functional analyses and deep mining of genetic resources in this parasitic nematode.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1253
Author(s):  
An-Pei Yang ◽  
Yu-Sheng Wang ◽  
Cong Huang ◽  
Zhi-Chuang Lv ◽  
Wan-Xue Liu ◽  
...  

Tuta absoluta is one of the most significant invasive pests affecting tomato plants worldwide. RT-qPCR has emerged as one of the most sensitive and accurate methods for detecting gene expression data. The screening of stable internal reference genes is the most critical step for studying the molecular mechanisms of environmental adaptability. The stable reference genes expressed in T. absoluta under specific experimental conditions have not yet been clarified. In this study, seven candidate reference genes (RPL27, RPS13, RPS15, EF1-α, TUB, TBP, and β-actin) and their optimal numbers were evaluated under biotic (developmental stages and adult tissues) and abiotic (insecticide, temperature, and plant VOC) conditions using four software programs. Our results identified the following reference genes and numbers as optimal: three genes (EF1-α, RPS13, and RPL27) for different developmental stages (egg, larva, pupa, unmated adult), two genes (RPS13 and TBP) for adult tissues (antenna, head, thorax, abdomen, leg), two genes (TBP and RPS13) for insecticides (Bacillus thuringiensis, chlorpyrifos, abamectin-aminomethyl, and chlorantraniliprole), two genes (RPL27 and TUB) for temperature-induced stresses (0, 25, and 40 °C), and two genes (RPS13 and TUB) for VOC-induced stresses (nonanal, α-phellandrene, and tomato leaves). Our results provide a reference for selecting appropriate reference genes for further study of the functional genes of T. absoluta under different experimental conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Chuyang Shao ◽  
Hongbo Shao

Kosteletzkya virginica(L.) is a newly introduced perennial halophytic plant. Presently, reverse transcription quantitative real-time PCR (qPCR) is regarded as the best choice for analyzing gene expression and its accuracy mainly depends on the reference genes which are used for gene expression normalization. In this study, we employed qPCR to select the most stable reference gene inK. virginicawhich showed stable expression profiles under our experimental conditions. The candidate reference genes were 18S ribosomal RNA (18SrRNA),β-actin (ACT),α-tubulin (TUA), and elongation factor (EF). We tracked the gene expression profiles of the candidate genes and analyzed their stabilities through BestKeeper, geNorm, and NormFinder software programs. The results of the three programs were identical and18SrRNAwas assessed to be the most stable reference gene in this study. However,TUAwas identified to be the most unstable. Our study proved again that the traditional reference genes indeed displayed a certain degree of variations under given experimental conditions. Importantly, our research also provides guidance for selecting most suitable reference genes and lays the foundation for further studies inK. virginica.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zheng Wang ◽  
Qianqian Meng ◽  
Xi Zhu ◽  
Shiwei Sun ◽  
Aiqin Liu ◽  
...  

Abstract Diaphania caesalis (Walker) is an important boring insect mainly distributed in subtropical and tropical areas and attacked tropical woody grain crops, such as starchy plants of Artocarpus. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful approach for investigating target genes expression profiles at the transcriptional level. However, the identification and selection of internal reference genes, which is often overlooked, is the most vital step before the analysis of target gene expression by qRT-PCR. So far, the reliable internal reference genes under a certain condition of D. caesalis have not been investigated. Therefore, this study evaluated the expression stability of eight candidate reference genes including ACT, β-TUB, GAPDH, G6PDH, RPS3a, RPL13a, EF1α, and EIF4A in different developmental stages, tissues and sexes using geNorm, NormFinder and BestKeeper algorithms. To verify the stability of the recommended internal reference genes, the expression levels of DcaeOBP5 were analyzed under different treatment conditions. The results indicated that ACT, RPL13a, β-TUB, RPS3a, and EF1α were identified as the most stable reference genes for further studies on target gene expression involving different developmental stages of D. caesalis. And ACT and EIF4A were recommended as stable reference genes for different tissues. Furthermore, ACT, EF1α, and RPS3a were ranked as the best reference genes in different sexes based on three algorithms. Our research represents the critical first step to normalize qRT-PCR data and ensure the accuracy of expression of target genes involved in phylogenetic and physiological mechanism at the transcriptional level in D. caesalia.


2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Yan-Qiong Guo ◽  
Yongchang Yang ◽  
Yanping Chai ◽  
Ling-Ling Gao ◽  
Ruiyan Ma

Abstract Stably expressed reference genes are critical internal standards for the quantification of gene transcription levels using quantitative real-time PCR. Housekeeping genes are commonly used as reference genes but their expressions were variable depending on experimental conditions in many insect species studied. Here we report the identification and evaluation of 10 housekeeping genes in alligator weed flea beetle, Agasicles hygrophila Selman & Vogt (Coleoptera: Chrysomelidae), a biocontrol agent of alligator weed. The 10 housekeeping genes are: beta-actin (Actin), ribosomal protein L13A (PRL13a), succinate dehydrogenase complex subunit A (SDHA), ribosomal protein S20 (RPS20), ribosomal protein S13 (RPS13), glyceraldehyde phosphate dehydrogenase (GAPDH), TATA-box-binding protein (TBP), ribosomal protein L32 (RPL32), tubulin alpha-1 chain (TUBULIN), and elongation factor-1 alpha (ELF). Five programs, geNorm, NormFinder, BestKeeper, ΔCt method, and RefFinder, were used to evaluate the expression stability of the 10 genes among various A. hygrophila body parts and with different nutrient types (starvation, diet types). The expression stability analysis showed that RPS32 and RPL13a were reliable reference genes for the study of gene transcription in different body parts; Actin and RPL13a were optimal reference genes for different nutrient types. The selections of reference genes were validated using a CarE gene (GeneBank No: KX353552). The results of this study provide useful bases for studies of gene expression in various aspects relating to A. hygrophila.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251920
Author(s):  
Long Ma ◽  
Ting Jiang ◽  
Xiangya Liu ◽  
Haijun Xiao ◽  
Yingchuan Peng ◽  
...  

The brassica leaf beetle Phaedon brassicae is a notorious defoliator of cruciferous vegetables. However, few molecular studies of this pest have been conducted due to limited sequence data. Recently, RNA sequencing has offered a powerful platform to generate numerous transcriptomic data, which require RT-qPCR to validate target gene expression. The selection of reliable reference genes to normalize RT-qPCR data is a prerequisite for gene expression analysis. In the present study, the expression stabilities of eight candidate reference genes under biotic conditions (development stages and various tissues) and abiotic perturbations (thermal stress and pesticide exposure) were evaluated using four different statistical algorithms. The optimal suites of reference genes were recommended for the respective experimental conditions. For tissue expression analysis, RPL32 and EF-1α were recommended as the suitable reference genes. RPL19 and TBP were the optimal reference genes across different developmental stages. RPL32 and TBP were identified as the most suitable references for thermal stress. Furthermore, RPL32 and RPL19 were ranked as the best references for insecticide exposure. This work provides a systematic exploration of the optimal reference genes for the respective experimental conditions, and our findings would facilitate molecular studies of P. brassicae.


Sign in / Sign up

Export Citation Format

Share Document