scholarly journals Anthropogenic Drivers of Mangrove Loss and Associated Carbon Emissions in South Sumatra, Indonesia

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 187
Author(s):  
Syaiful Eddy ◽  
Noril Milantara ◽  
Sigit D. Sasmito ◽  
Tadashi Kajita ◽  
Mohammad Basyuni

The Air Telang Protected Forest (ATPF) is one of the most dynamic and essential coastal forest landscapes in South Sumatra, Indonesia, because of its location between multiple river outlets, including the Musi catchment—Sumatra’s largest and most dense lowland catchment area. While most ATPF areas are covered by mangroves, these areas have been experiencing severe anthropogenic-driven degradation and conversion. This study aims to evaluate land cover changes and associated carbon emissions in the ATPF over a 35-year period (1985–2020) by utilizing the available Landsat and Sentinel imagery from 1985, 2000, and 2020. Throughout the analysis period, we observed 63% (from 10,886 to 4059 ha) primary and secondary forest loss due to land use change. We identified three primary anthropogenic activities driving these losses, namely, land clearing for plantations and agriculture (3693 ha), coconut plantations (3315 ha), aquaculture (245 ha). We estimated that the largest carbon emissions were caused by coconut plantation conversion, with total carbon emissions of approximately 14.14 Mt CO2-eq. These amounts were almost 4 and 21 times higher than emissions from land clearing and aquaculture, respectively, as substantial soil carbon loss occurs once mangroves get transformed into coconut plantations. While coconut plantation expansion on mangroves could generate significant carbon stock losses and cleared forests become the primary candidate for restoration, our dataset could be useful for future land-based emission reduction policy intervention at a subnational level. Ultimately, our findings have direct implications for current national climate policies, through low carbon development strategies and emission reductions from the land use sector for 2030, as outlined in the Nationally Determined Contributions (NDCs).

2015 ◽  
Vol 103 ◽  
pp. 77-86 ◽  
Author(s):  
Xiaowei Chuai ◽  
Xianjin Huang ◽  
Wanjing Wang ◽  
Rongqin Zhao ◽  
Mei Zhang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2021 ◽  
Vol 245 ◽  
pp. 01020
Author(s):  
Aixia Xu ◽  
Xiaoyong Yang

The input-output method is employed in this study to measure the total carbon emission of the logistics industry in Guangdong. The findings revealed that the carbon emission of direct energy consumption of the logistics industry in Guangdong is far above the actual carbon emissions, the second and third industries play a significant role in carbon emission of indirect energy consumption in the logistics industry in Guangdong. To reduce energy consumption and carbon emissions in Guangdong, it is not only important to control the carbon emissions in the logistics industry, but strengthen carbon emission detection in relevant industries, improve the energy utilization rate and reduce emissions in other industries, and move towards low-carbon sustainable development.


2019 ◽  
Vol 79 ◽  
pp. 03019
Author(s):  
Wenxiu Wang ◽  
Shangjun Ke ◽  
Daiqing Zhao ◽  
Guotian Cai

Energy-related carbon emissions in districts and counties of Guangdong province from 2005 to 2016 are researched based on spatial econometrics method in this article, and significance cluster area and heterogeneity area are precise pinpointed. Conclusions are as follows: (1) total carbon emissions and per capita carbon emissions exist significance global spatial autocorrelation in the year 2005-2016, and formed significance high-high cluster area in districts and counties of Guangzhou city, Shenzhen city and Dongguan city. It also formed three significance low-low cluster areas in districts and counties of eastern, western and northern of Guangdong province. Low-high heterogeneity area and high -low heterogeneity area often appears in the scope of high-high cluster area and low-low cluster area. (2)Carbon emission intensity not exist significance global spatial autocorrelation, but exist significance cluster area and heterogeneity area in the ecological development areas of eastern, western and northern of Guangdong province. In the end, the paper puts forward the regional and detailed policy recommendations for efficient carbon emission reduction for each cluster type region: carbon high-high cluster areas are priority reduce emissions area, heighten energy saving technology and optimize industrial structure are two grippers to reduce emissions. Low - low carbon emissions concentrated area in western of Guangdong should primarily develop high and new technology industry. Low low carbon emissions concentrated areas and high - high carbon emissions intensity concentrated area for eastern and northern of Guangdong province should try hard to wins ecological compensation at the same time focus on developing ecological tourism.


2014 ◽  
Vol 707 ◽  
pp. 214-218
Author(s):  
Xin Yu Zhang ◽  
Pei Ji Shi

Regional land use is an important source of carbon emissions .To some extent , the optimization land use will change the pattern and structure of human energy consumption .In this paper, we try to put forward a new approach to optimize the land use structure of the low carbon target in Zhangye .Three schemes for land use low-carbon optimization were proposed and analyzed, and the policy suggestions were put forward finally . Compare with the original plan, Optimization program in the year of 2020, the amount of carbon accumulation increase 124.1648 million tons, and carbon emissions reduce 1,152,100 tons. This indicates that the scheme for land use planning to achieve carbon reduction and carbon accumulation has important guiding significance.


2018 ◽  
Vol 24 (5) ◽  
pp. 510-525 ◽  
Author(s):  
Meiwei Tang ◽  
Shouzhong Ge

This article explores the issues of carbon dioxide (CO2) emissions resulting from the production of the goods and services provided to supply tourism consumption. First, we define the scope of tourism activities and the resulting tourism consumption and tourism direct gross value added (TDGVA). Second, we calculate CO2 emissions for sectors and compile a carbon input-output table (CIOT). Third, we adjust the tourism-related products consumed according to the range of the corresponding sectors of the CIOT. Finally, we use Shanghai as an example to calculate the carbon emissions that result from tourism consumption using the input-output model. This study shows that the TDGVA accounted for 7.97% of the Gross Domestic Product (GDP) in 2012, whereas the carbon footprint of tourism accounted for 20.45% of total carbon emissions. The results demonstrate that tourism is not a low-carbon industry in Shanghai.


2016 ◽  
Vol 36 (4) ◽  
Author(s):  
韩骥 HAN Ji ◽  
周翔 ZHOU Xiang ◽  
象伟宁 Xiang Weining

2012 ◽  
Vol 598 ◽  
pp. 241-246
Author(s):  
Ya Li Luo ◽  
Chang Xin Zhang

The paper firstly analyzed the carbon emissions effect of the city land use. Then it put forward the high density compact land use pattern is consistent with low-carbon developing goal. Finally, the paper systematically expounded the connotation of the low-carbon high density compact mixed use, and discussed the basic forms of low-carbon land use pattern, such as the giant single building, buildings on the same platform, new units model on the community scale etc..


Sign in / Sign up

Export Citation Format

Share Document