scholarly journals Carbon Sequestration in Mixed Deciduous Forests: The Influence of Tree Size and Species Composition Derived from Model Experiments

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Anne Holtmann ◽  
Andreas Huth ◽  
Felix Pohl ◽  
Corinna Rebmann ◽  
Rico Fischer

Forests play an important role in climate regulation due to carbon sequestration. However, a deeper understanding of forest carbon flux dynamics is often missing due to a lack of information about forest structure and species composition, especially for non-even-aged and species-mixed forests. In this study, we integrated field inventory data of a species-mixed deciduous forest in Germany into an individual-based forest model to investigate daily carbon fluxes and to examine the role of tree size and species composition for stand productivity. This approach enables to reproduce daily carbon fluxes derived from eddy covariance measurements (R2 of 0.82 for gross primary productivity and 0.77 for ecosystem respiration). While medium-sized trees (stem diameter 30–60 cm) account for the largest share (66%) of total productivity at the study site, small (0–30 cm) and large trees (>60 cm) contribute less with 8.3% and 25.5% respectively. Simulation experiments indicate that vertical stand structure and shading influence forest productivity more than species composition. Hence, it is important to incorporate small-scale information about forest stand structure into modelling studies to decrease uncertainties of carbon dynamic predictions.

2021 ◽  
Author(s):  
Anne Holtmann ◽  
Andreas Huth ◽  
Felix Pohl ◽  
Corinna Rebmann ◽  
Rico Fischer

<p>Forests play an important role in climate regulation due to carbon sequestration. However, a deeper understanding of forest carbon flux dynamics are often missing due to a lack of information about forest structure and species composition, especially for non-even-aged and mixed forests. In this study, we combined field inventory data of a mixed deciduous forest in Germany with an individual-based forest gap model to investigate daily carbon fluxes and to examine the role of tree size and species composition for the overall stand productivity. Simulation results show that the forest model is capable to reproduce daily eddy covariance measurements (R<sup>2</sup> of 0.73 for gross primary productivity and of 0.65 for ecosystem respiration). The simulation results showed that the forest act as a carbon sink with a net uptake of 3.2 t<sub>C</sub> ha<sup>-1</sup> yr<sup>-1</sup>  (net ecosystem productivity) and an overall gross primary productivity of 18.2  t<sub>C</sub> ha<sup>-1</sup> yr<sup>-1</sup>. At the study site, medium sized trees (30-60cm) account for the largest share (66%) of the total productivity. Small (0-30cm) and large trees (>60cm) contribute less with 8.5% and 25.5% respectively. Simulation experiments showed, that species composition showed less effect on forest productivity. Stand productivity therefore is highly depended on vertical stand structure and light climate. Hence, it is important to incorporate small scale information’s about forest stand structure into modelling studies to decrease uncertainties of carbon dynamic predictions. Experiments with such a modelling approach might help to investigate large scale mitigation strategies for climate change that takes local forest stand characteristics into account.</p>


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jaime Madrigal-González ◽  
Paloma Ruiz-Benito ◽  
Sophia Ratcliffe ◽  
Joaquín Calatayud ◽  
Gerald Kändler ◽  
...  

Abstract Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.


1996 ◽  
Vol 12 (5) ◽  
pp. 663-680 ◽  
Author(s):  
Daniel Imbert ◽  
Patrick Labbé ◽  
Alain Rousteau

ABSTRACTA comparative study of the damage caused by Hurricane Hugo on the three main types of forest in the lesser Antilles was carried out in the mangrove forest, the semi-evergreen forest and the rainforests of Guadeloupe. Hurricane impact on these forests showed at first that high canopy trees generally prevented understorey trees from heavy direct damage (shield effect). In the species-poor, structurally homogeneous stands, in the mangrove forest, species' susceptibility was the major determinant in both intensity and type of damage. Damage was heavy in places and showed a certain spatial uniformity. In the rainforest, the high structural complexity of the vegetation generally induced a great variability in the spatial distribution of damage even at a small scale. Due to the presence of tall trees, indirect damage was locally very heavy. Clumps of large trees formed resistant structures which diminished lethal damage below the main canopy (cluster effect). In such a highly structured, species-rich forest, species' susceptibility was concealed at the local scale by the prevailing influence of vertical structure. Because of its relatively rich flora but low stature, the semi-deciduous forest exhibited intermediate patterns of damage. It was concluded that floristic composition and forest structure help to explain, and to predict, hurricane damage to forest cover.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 615
Author(s):  
Linh Thuy My Nguyen ◽  
Hanh Thi Hoang ◽  
Han Van Ta ◽  
Pil Sun Park

Mangroves are adapted to coastal processes; however, mangrove species showed various responses to estuarian environments, leading to different structural characteristics at accretion and erosion areas. The species composition, structure and regeneration of mangrove forests were investigated to provide insight into mangrove forest development in response to shoreline accretion and erosion processes. The species composition and stand structure of mangrove forests were measured along the distance from the shoreline at accretion and erosion sites in Ca Mau, Vietnam. The hierarchical clustering of grouped stands based on species composition and tree size distribution was conducted. Grouped mangrove stands showed landward changes in species composition and stand structure from the shoreline (p < 0.05), reflecting the timescale of accretion or erosion at both accretion and erosion sites. Stand development patterns differed between accretion and erosion sites, and Avicennia alba and Rhizophora apiculata dominated seaward plots at accretion and erosion sites, respectively. Newer accredited sites were dominated by A. alba. Mangrove stands developed from dense A. alba dominant to R. apiculata dominant stands with increasing tree size at accretion sites. There were more species-colonized sites with a higher erosion rate or that were more recently eroded, implying that timescale of erosion and erosion rate affected species composition and regeneration on erosion sites. Accretion and erosion affected stand development of mangroves differently, implying that conservation and restoration strategies should be applied differently to accretion and erosion sites.


Author(s):  
William Romme ◽  
Daniel Kashian

The importance of large, infrequent natural disturbances, particularly as they influence post­disturbance succession, is well recognized. The conceptualization of ecological systems and landscapes as mosaics of patches generated by disturbance emphasizes successional change, which in turn is a major component of ecologists' understanding of disturbance in a landscape context. However, paradigms of succession largely evolved for small-scale dynamics. Subsequently, these paradigms do not adequately predict the spatial variability that occurs within the perimeter of large, infrequent disturbances, nor do they adequately consider the effects of heterogeneity on recovery of the system. Understanding the nature of the disturbance mosaic and the factors controlling landscape patterns are crucial for predicting ecosystem dynamics and vegetation development in disturbance-prone landscapes, and research that addresses these questions remains a priority. Landscape heterogeneity following large, mfrequent fires is represented by a patchwork of burned and unburned vegetation as well as by a mosaic of burn severities (Turner et al. 1997, Romme et al. 1998), so that the mosaic of stand structure and function produced by fire is a legacy of the disturbance itself as well as that of the pre-fire forest. In this sense, large, infrequent fires are thought to impose a persistent influence on landscape pattern. Landscape pattern has large implications for biodiversity, determines the connectivity of habitat, affects the spread of disturbances such as insect outbreaks, and may influence the initiation and spread of small, frequent surface fires by affecting the spatial distribution of fuels. Similarly, spatial heterogeneity in stand structure that exists across a landscape may influence the propagation of crown fires (Van Wagner 1977, Turner and Romme 1994). Clearly, understanding the changes that occur in landscape pattern provides the key to understanding the dynamics of many ecological processes. Our study examines the natural changes that occur in landscape pattern with succession in Yellowstone National Park (YNP) between large, infrequent wildfires. The 1988 fires in YNP created a mosaic of burn severities that produced tremendous variation in density of lodgepole pine (Pinus contorta var. latifolia) seedlings across the landscape (Turner et al. 1994). Because the Yellowstone mosaic of post-fire seedling densities varies from high-density stands (>50,000 trees/ha), which will inevitably be subject to self-thinning, to low-density stands (


2022 ◽  
pp. 104-120
Author(s):  
Siarudin Mohamad ◽  
San Afri Awang ◽  
Ronggo Sadono ◽  
Priyono Suryanto

Small-scale Privately-owned Forest (SSPF) has various patterns identification, based on the stand structure and species composition. The recognition and classification of the SSPF cropping patterns are required for further planning and policy development. Therefore, this study aims to classify the cropping pattern of SSPF in Ciamis Regency, West Java Province, Indonesia. The data were collected by observing the stand structure and species composition of 150 plots of land, encompassing three Sub-districts representing the central, northern, and southern regions of Ciamis Regency. The four categorical variables include tree species composition, age, spatial distribution, and intercropping pattern. While the two continuous variables were stand density and basal area. The patterns obtained were classified based on a Two-Step Cluster algorithm with log-likelihood distance measure, and auto clustering using Schwarz's Bayesian Information Criterion, validated by silhouette index. In addition, a multicollinearity test was conducted to reduce redundancy in using variable sets. The results showed that, the improvement of the cluster quality based on the silhouette index value, was achievable by excluding the tree spatial distribution variable, which exhibits multicollinearity. The cropping patterns were classified into three categories, namely tree crops, mixed-tree lots, and agrisilviculture for group-1, group-2, and group-3, respectively. Group-1 consisted of stands with one or two commercial tree species, and in several cases, were intercropped. Group-2 contained uneven-aged mixed-tree stands without any crops. While Group-3 consisted of an intercropping system of uneven-aged mixed-tree stands and crops. The results suggest further analysis, in order to relate the cropping patterns with the socio-economic characteristics of the landowners, as well as the strategies for the development of a sustainable SSPF.


2015 ◽  
Vol 45 (11) ◽  
pp. 1489-1497 ◽  
Author(s):  
Virginia Hernandez-Santana ◽  
Adan Hernandez-Hernandez ◽  
Matthew A. Vadeboncoeur ◽  
Heidi Asbjornsen

A major challenge in studies estimating stand water use in mixed-species forests is how to effectively scale data from individual trees to the stand. This is the case for forest ecosystems in the northeastern USA where differences in water use among species and across different size classes have not been extensively studied, despite their relevance for a wide range of ecosystem services. Our objectives were to assess the importance of different sources of variability on transpiration upscaling and explore the potential impacts of future shifts in species composition on the forest water budget. We measured sap velocity in five tree species (Fagus grandifolia Ehrh., Acer rubrum L., Acer saccharum Marsh., Betula alleghaniensis Britton, and Betula papyrifera Marsh.) in a mature stand and a young stand in New Hampshire, USA. Our results showed that the greatest potential source of error was radial variability and that tree size was more important than species in determining sap velocity. Total sapwood area was demonstrated to exert a strong controlling influence on transpiration, varying depending on tree size and species. We conclude that the effect of potential species shifts on transpiration will depend on the sap velocity, determined not only by radial variation and tree size, but also by the sapwood area distribution in the stand.


2008 ◽  
Vol 159 (4) ◽  
pp. 80-90 ◽  
Author(s):  
Bogdan Brzeziecki ◽  
Feliks Eugeniusz Bernadzki

The results of a long-term study on the natural forest dynamics of two forest communities on one sample plot within the Białowieża National Park in Poland are presented. The two investigated forest communities consist of the Pino-Quercetum and the Tilio-Carpinetum type with the major tree species Pinus sylvestris, Picea abies, Betula sp., Quercus robur, Tilia cordata and Carpinus betulus. The results reveal strong temporal dynamics of both forest communities since 1936 in terms of tree species composition and of general stand structure. The four major tree species Scots pine, birch, English oak and Norway spruce, which were dominant until 1936, have gradually been replaced by lime and hornbeam. At the same time, the analysis of structural parameters indicates a strong trend towards a homogenization of the vertical stand structure. Possible causes for these dynamics may be changes in sylviculture, climate change and atmospheric deposition. Based on the altered tree species composition it can be concluded that a simple ≪copying≫ (mimicking) of the processes taking place in natural forests may not guarantee the conservation of the multifunctional character of the respective forests.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 880
Author(s):  
Andrey Sirin ◽  
Alexander Maslov ◽  
Dmitry Makarov ◽  
Yakov Gulbe ◽  
Hans Joosten

Forest-peat fires are notable for their difficulty in estimating carbon losses. Combined carbon losses from tree biomass and peat soil were estimated at an 8 ha forest-peat fire in the Moscow region after catastrophic fires in 2010. The loss of tree biomass carbon was assessed by reconstructing forest stand structure using the classification of pre-fire high-resolution satellite imagery and after-fire ground survey of the same forest classes in adjacent areas. Soil carbon loss was assessed by using the root collars of stumps to reconstruct the pre-fire soil surface and interpolating the peat characteristics of adjacent non-burned areas. The mean (median) depth of peat losses across the burned area was 15 ± 8 (14) cm, varying from 13 ± 5 (11) to 20 ± 9 (19). Loss of soil carbon was 9.22 ± 3.75–11.0 ± 4.96 (mean) and 8.0–11.0 kg m−2 (median); values exceeding 100 tC ha−1 have also been found in other studies. The estimated soil carbon loss for the entire burned area, 98 (mean) and 92 (median) tC ha−1, significantly exceeds the carbon loss from live (tree) biomass, which averaged 58.8 tC ha−1. The loss of carbon in the forest-peat fire thus equals the release of nearly 400 (soil) and, including the biomass, almost 650 tCO2 ha−1 into the atmosphere, which illustrates the underestimated impact of boreal forest-peat fires on atmospheric gas concentrations and climate.


Sign in / Sign up

Export Citation Format

Share Document