scholarly journals PmMYB4, a Transcriptional Activator from Pinus massoniana, Regulates Secondary Cell Wall Formation and Lignin Biosynthesis

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1618
Author(s):  
Sheng Yao ◽  
Peizhen Chen ◽  
Ye Yu ◽  
Mengyang Zhang ◽  
Dengbao Wang ◽  
...  

Wood formation originates in the biosynthesis of lignin and further leads to secondary cell wall (SCW) biosynthesis in woody plants. Masson pine (Pinus massoniana Lamb) is an economically important industrial timber tree, and its wood yield affects the stable development of the paper industry. However, the regulatory mechanisms of SCW formation in Masson pine are still unclear. In this study, we characterized PmMYB4, which is a Pinus massoniana MYB gene involved in SCW biosynthesis. The open reading frame (ORF) of PmMYB4 was 1473 bp, which encoded a 490 aa protein and contained two distinctive R2 and R3 MYB domains. It was shown to be a transcription factor, with the highest expression in semi-lignified stems. We overexpressed PmMYB4 in tobacco. The results indicated that PmMYB4 overexpression increased lignin deposition, SCW thickness, and the expression of genes involved in SCW formation. Further analysis indicated that PmMYB4 bound to AC-box motifs and might directly activate the promoters of genes (PmPAL and PmCCoAOMT) involved in SCW biosynthesis. In addition, PmMYB4-OE(over expression) transgenic lines had higher lignin and cellulose contents and gene expression than control plants, indicating that PmMYB4 regulates SCW mainly by targeting lignin biosynthetic genes. In summary, this study illustrated the MYB-induced SCW mechanism in Masson pine and will facilitate enhanced lignin and cellulose synthesis in genetically engineered trees.

2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1002
Author(s):  
Shenquan Cao ◽  
Cong Wang ◽  
Huanhuan Ji ◽  
Mengjie Guo ◽  
Jiyao Cheng ◽  
...  

Secondary cell wall (SCW) deposition is an important process during wood formation. Although aspartic proteases (APs) have been reported to have regulatory roles in herbaceous plants, the involvement of atypical APs in SCW deposition in trees has not been reported. In this study, we characterised the Populus trichocarpa atypical AP gene PtAP66, which is involved in wood SCW deposition. Transcriptome data from the AspWood resource showed that in the secondary xylem of P. trichocarpa, PtAP66 transcripts increased from the vascular cambium to the xylem cell expansion region and maintained high levels in the SCW formation region. Fluorescent signals from transgenic Arabidopsis plant roots and transiently transformed P. trichocarpa leaf protoplasts strongly suggested that the PtAP66-fused fluorescent protein (PtAP66-GFP or PtAP66-YFP) localised in the plasma membrane. Compared with the wild-type plants, the Cas9/gRNA-induced PtAP66 mutants exhibited reduced SCW thickness of secondary xylem fibres, as suggested by the scanning electron microscopy (SEM) data. In addition, wood composition assays revealed that the cellulose content in the mutants decreased by 4.90–5.57%. Transcription analysis further showed that a loss of PtAP66 downregulated the expression of several SCW synthesis-related genes, including cellulose and hemicellulose synthesis enzyme-encoding genes. Altogether, these findings indicate that atypical PtAP66 plays an important role in SCW deposition during wood formation.


2019 ◽  
Author(s):  
Philippe Golfier ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
Feng He ◽  
...  

AbstractCell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. A wealth of research in model organisms has revealed that transcriptional regulation of secondary cell wall formation is orchestrated by a hierarchical transcription factor (TF) network with NAC TFs as master regulators and MYB factors in the lower tier regulators. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. Here, we characterized two Miscanthus MYB TFs, MsSCM1 and MsMYB103, and compared their transcriptional impact with that of the master regulator MsSND1. In Miscanthus leaves MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. Ectopic expression of MsSCM1 and MsMYB103 in tobacco leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin composition. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed extensive overlap with the response to MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards tailored biomass.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yongil Yang ◽  
Chang Geun Yoo ◽  
William Rottmann ◽  
Kimberly A. Winkeler ◽  
Cassandra M. Collins ◽  
...  

Abstract Background Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. Results Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. Conclusions PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.


2002 ◽  
Vol 80 (10) ◽  
pp. 1029-1033 ◽  
Author(s):  
W Gindl ◽  
H S Gupta ◽  
C Grünwald

The lignin content and the mechanical properties of lignifying and fully lignified spruce tracheid secondary cell walls were determined using UV microscopy and nano-indentation, respectively. The average lignin content of developing tracheids was 0.10 g·g–1, as compared with 0.21 g·g–1 in mature tracheids. The modulus of elasticity of developing cells was on average 22% lower than the one measured in mature, fully lignified cells. For the longitudinal hardness, a larger difference of 26% was observed. As lignifying cells in the cambial zone are undergoing cell wall development, spaces in the cellulose–hemicellulose structure are filled with lignin and the density of the cell wall is believed to increase. It is therefore suggested that the observed difference in modulus of elasticity between developing and fully lignified cell walls is due to the filling of spaces with lignin and an increase of the packing density of the cell wall during lignification. Although remarkably less stiff than the composite polysaccharide structure in the secondary cell wall, lignin may be considered equally hard. Therefore, the observed increase in lignin content may contribute directly to the measured increase of hardness.Key words: secondary cell wall, hardness, lignin, modulus of elasticity, wood formation.


2007 ◽  
Vol 34 (1) ◽  
pp. 1 ◽  
Author(s):  
Yong-Ling Ruan

Higher plants comprise mixtures of some 40 different cell types, and this often complicates the interpretation of data obtained at the tissue level. Studies for a given cell type may provide novel insights into the mechanisms underlying defined cellular and developmental processes. In this regard, the cotton fibre represents an excellent single-cell model to study the control of rapid cell elongation and cellulose synthesis. These single cells, initiated from the ovule epidermis at anthesis, typically elongate to ~3–5 cm in the tetraploid species before they switch to intensive secondary cell wall cellulose synthesis. By maturity, more than 94% of fibre weight is cellulose. To unravel the mechanisms of fibre elongation and cellulose synthesis, two hypotheses have been examined: (a) that sucrose degradation and utilisation mediated by sucrose synthase (Sus) may play roles in fibre development and (b) that symplastic isolation of the fibre cells may be required for their rapid elongation. Reverse genetic and biochemical analyses have revealed the critical role that Sus plays in fibre initiation and early elongation. Late in development, plasma-membrane and cell wall association of Sus protein seems to be involved in rapid cellulose synthesis. Cell biology and gene expression studies showed a temporary closure of fibre plasmodesmata (PD), probably due to the deposition of callose, at the rapid phase of elongation. The duration of the PD closure correlates positively with the final fibre length attained. These data support the view that PD closure may be required for fibres to achieve extended elongation. The branching of PD towards the secondary cell wall stage is postulated to function as a molecule sieve for tight control of macromolecule trafficking into fibres to sustain intensive cellulose synthesis.


Cellulose ◽  
2004 ◽  
Vol 11 (3/4) ◽  
pp. 329-338 ◽  
Author(s):  
Neil G. Taylor ◽  
John C. Gardiner ◽  
Raymond Whiteman ◽  
Simon R. Turner

2020 ◽  
Author(s):  
Song Chen ◽  
Xin Lin ◽  
Xiyang Zhao ◽  
Su Chen

Abstract BackgroundCellulose is an essential structural component of plant cell wall and is an important resource to produce paper, textiles, bioplastics and other biomaterials. The synthesis of cellulose is among the most important but poorly understood biochemical processes, which is precisely regulated by internal and external cues.ResultsHere, we identified 46 gene models in 7 gene families which encoding cellulose synthase and related enzymes of Betula pendula, and the transcript abundance of these genes in xylem, root, leaf and flower tissues also be determined. Based on these RNA-seq data, we have identified 8 genes that most likely participate in secondary cell wall synthesis, which include 3 cellulose synthase genes and 5 cellulose synthase-like genes. In parallel, a gene co-expression network was also constructed based on transcriptome sequencing.ConclusionsIn this study, we have identified a total of 46 cell wall synthesis genes in B. pendula, which include 8 secondary cell wall synthesis genes. These analyses will help decipher the genetic information of the cell wall synthesis genes, elucidate the molecular mechanism of cellulose synthesis and understand the cell wall structure in B. pendula.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Yu ◽  
Huizi Liu ◽  
Nan Zhang ◽  
Caiqiu Gao ◽  
Liwang Qi ◽  
...  

The MYB (v-myb avian myeloblastosis viral oncogene homolog) family is one of the largest transcription factor families in plants, and is widely involved in the regulation of plant metabolism. In this study, we show that a MYB4 transcription factor, BpMYB4, identified from birch (Betula platyphylla Suk.) and homologous to EgMYB1 from Eucalyptus robusta Smith and ZmMYB31 from Zea mays L. is involved in secondary cell wall synthesis. The expression level of BpMYB4 was higher in flowers relative to other tissues, and was induced by artificial bending and gravitational stimuli in developing xylem tissues. The expression of this gene was not enriched in the developing xylem during the active season, and showed higher transcript levels in xylem tissues around sprouting and near the dormant period. BpMYB4 also was induced express by abiotic stress. Functional analysis indicated that expression of BpMYB4 in transgenic Arabidopsis (Arabidopsis thaliana) plants could promote the growth of stems, and result in increased number of inflorescence stems and shoots. Anatomical observation of stem sections showed lower lignin deposition, and a chemical contents test also demonstrated increased cellulose and decreased lignin content in the transgenic plants. In addition, treatment with 100 mM NaCl and 200 mM mannitol resulted in the germination rate of the over-expressed lines being higher than that of the wild-type seeds. The proline content in transgenic plants was higher than that in WT, but MDA content was lower than that in WT. Further investigation in birch using transient transformation techniques indicated that overexpression of BpMYB4 could scavenge hydrogen peroxide and O2.– and reduce cell damage, compared with the wild-type plants. Therefore, we believe that BpMYB4 promotes stem development and cellulose biosynthesis as an inhibitor of lignin biosynthesis, and has a function in abiotic stress resistance.


Sign in / Sign up

Export Citation Format

Share Document