scholarly journals Dry Anaerobic Digestion of Food and Paper Industry Wastes at Different Solid Contents

Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 40 ◽  
Author(s):  
Anette T. Jansson ◽  
Regina J. Patinvoh ◽  
IIona Sárvári Horváth ◽  
Mohammad J. Taherzadeh

A large volume of food is being wasted every year, while the pulp and paper industry also generate a large amount of solid wastes on a daily basis, causing environmental challenges around the world. Dry anaerobic digestion (AD) of these solid wastes is a cost-effective method for proper management. However, dry digestion of these waste streams has been restricted due to their complex structure, the presence of possible inhibitors and inappropriate operating conditions. In light of this fact, dry digestion of food waste (FW) and paper wastes (PW) was conducted at different total solid (TS) concentrations of reactor mixtures of 14%, 16%, 18% and 20% TS, corresponding to substrate to inoculum (S/I) ratio of 0.5 and 1; investigating the optimum operating conditions for effective dry digestion of these complex wastes. The highest methane yields of 402 NmlCH4/gVS and 229 NmlCH4/gVS were obtained from digestion of FW and PW, respectively at 14%TS corresponding to an S/I ratio of 0.5. Increasing the S/I ratio from 0.5 to 1 and thereby having a TS content of 20% in the reactor mixtures was unfavorable to the digestion of both substrates.

2003 ◽  
Vol 38 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Soufiane Tahiri ◽  
Ali Messaoudi ◽  
Abderrahman Albizane ◽  
Mohamed Azzi ◽  
Mohamed Bouhria ◽  
...  

Abstract In this work, the ability of chrome shavings and of crust leather buffing dusts to remove dyes from aqueous solutions has been studied. Buffing dusts proved to be a much better adsorbent than chrome shavings for cationic dyes. The adsorption of anionic dyes is very important on two studied wastes. The pH has an obvious influence on the adsorption of dyes. Adsorption of cationic dyes is less favourable under acidic conditions (pH <3.5) and at high pH values (pH >10.5). The adsorption of anionic dyes on both adsorbents is more favourable under acidic conditions (pH <3). The adsorption on chrome shavings is improved by the use of finer particles. The kinetic adsorption was also studied. Adsorption isotherms, at the optimum operating conditions, were determined. Adsorption follows the Langmuir model. The isotherm parameters have been calculated. The column technique could be applied to treat significant volumes of solutions.


Bioengineered ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 502-509
Author(s):  
Anette T. Jansson ◽  
Regina J. Patinvoh ◽  
Mohammad J. Taherzadeh ◽  
Ilona Sárvári Horváth

2008 ◽  
Vol 58 (9) ◽  
pp. 1757-1763 ◽  
Author(s):  
J. Guendouz ◽  
P. Buffière ◽  
J. Cacho ◽  
M. Carrère ◽  
J.-P. Delgenes

Two experiments were undertaken in three different experimental set-ups in order to compare them: an industrial 21-m3 pilot reactor, a new 40-ℓ laboratory pilot reactor and bmp type plasma bottles. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions with the same feedstock in all vessels. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS) for both pilot reactors and were different from the bottle tests. The dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in the larger one. Adaptation of microorganisms to the waste and operating conditions was also pointed out along the consecutive batches. Thermophilic semi-continuous tests were performed in both reactors with similar conditions. The methane production efficiencies were similar.


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2006 ◽  
Vol 53 (8) ◽  
pp. 23-32 ◽  
Author(s):  
D. Bolzonella ◽  
P. Pavan ◽  
S. Mace ◽  
F. Cecchi

This paper presents a comparison of dry anaerobic digestion reactors fed with differently sorted municipal organic solid wastes. One reactor was fed with source sorted organic wastes and a second reactor was fed with mixed organic wastes consisting of grey wastes, mechanically selected municipal solid wastes and sludge. The two reactors utilised the same process (Valorga) and operational conditions at full scale. The results of the study emphasise the influence of the kind of treated material on the process performances, especially in terms of biogas and methane production, thus, energy reclamation. The reactor treating the source sorted organic waste and the reactor treating the mixed organic wastes generated some 200 m3 and 60 m3 of biogas per ton of waste treated, respectively, while the specific methane production was some 0.40 and 0.13 m3CH4/kgTVS, respectively. The mass balance and the final fate of the digested material from the two reactors were also clearly different. As for the costs, these were some 29 € per ton of treated waste (50% for personnel) and 53 €/ton for disposing of the rejected materials. Incomes were some 100 €/ton (on average) and an other 15 €/ton came from green certificates. The initial investment was 16 million Euros.


2011 ◽  
Vol 79 ◽  
pp. 48-52 ◽  
Author(s):  
Hong Li Li ◽  
Yan Wang

The aim of this paper was to analyze the biomethanization process of cattle manure with four different total solid percentages (15%, 20%, 25%, 30% TS) and three different stirring frequency. The experimental procedure was programmed to select the initial performance parameter and the operational parameter in a lab-reactor. The values of VFAs indicated that all the reactors showed no destabilization and at the end of the experiment the VFAs were consumed completely. The best performance for cattle manure biodegradation and methane generation was the reactor with 20% TS, with the biogas yield of 0.22 L/g VS and the methane yield of 0.11 LCH4/g VS. Furthermore, the better operational parameter of stirring frequency was stirring once every two days.


2019 ◽  
Vol 83 ◽  
pp. 01011 ◽  
Author(s):  
Khaled Elsharkawy ◽  
Mohamed Elsamadony ◽  
Hafez Afify

Organic solid wastes are produced with large amount wherever there are human activities. However, improper treated organic wastes made them as sources of diseases. On the other hand, these fractions contain nutrients and energy, so they have also valuable resources. As a result, exploring their potential as an energy source can be accomplish via anaerobic digestion process, in which, organics converted into hydrogen, methane and/or ethanol. Therefore, this manuscript introduces an overview of the common applied types of reactor that can handle these types of wastes in their solid state and recover them in term of biogas, as well as, stabilize the produced digestate to bio-fertilizers by compositing approach. A comparison also listed to demonstrate the optimum operational conditions and expected amount of biogas from each type.


Author(s):  
Ahmad Reza Salehiyoun ◽  
Hamid Zilouei ◽  
Mohammad Safari ◽  
Francesco Di Maria ◽  
Seyed Hashem Samadi ◽  
...  

2014 ◽  
Vol 237 ◽  
pp. 209-216 ◽  
Author(s):  
Yue-gan Liang ◽  
Shuai-shuai Yin ◽  
You-bin Si ◽  
Zheng Zheng ◽  
Shou-jun Yuan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5563
Author(s):  
Patrícia V. Almeida ◽  
Rafaela P. Rodrigues ◽  
Leonor M. Teixeira ◽  
Andreia F. Santos ◽  
Rui C. Martins ◽  
...  

The agro-industry of tomato generates three types of residues: ripe rotten tomato (unfit for consumption) (RT), green (unripe) tomato (GT), and tomato branches including leaves and stems (TB). These materials are commonly wasted or used as feed for livestock. Energy production through anaerobic digestion is an alternative way to manage and simultaneously valorise these materials. Initially, the operating conditions of mono anaerobic digestion were investigated using RT. Thus, a design of experiments based on a two-level fractional factorial design with resolution V was performed to determine the factors that affect biochemical methane potential (BMP). The substrate to inoculum ratio (SIR), total volatile solids concentration (VSt), working volume (WV), presence of nutrients (Nu), and the pre-incubation of the inoculum (Inc) were investigated. The results showed that SIR is the most important factor. The maximum BMP for RT was 297 NmLCH4/gVS with SIR = 0.5; tVS = 20 g/L; WV = 20%; no pre-incubation and the presence of nutrients. Using these optimum operating conditions, co-digestion was investigated through a mixture design approach. The substrates RT and GT presented similar BMP values, whereas TB led to a significantly lower BMP. Indeed, when high concentrations of TB were used, a significant decrease in methane production was observed. Nonetheless, the highest BMP was achieved with a mixture of 63% RT + 20% GT + 17% TB, with a production of 324 NmLCH4/gVS, corresponding to a synergetic co-digestion performance index of about 1.20. In general, although the substrate RT generates the highest BMP, the mixture with GT did not impair the methane yield. Overall, the co-digestion of tomato residues must be conducted with SIR close to 0.5 and the content of tomato branches in the reaction mixture should be kept low (up to 20%).


Sign in / Sign up

Export Citation Format

Share Document