scholarly journals Bioenergy Production through Mono and Co-Digestion of Tomato Residues

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5563
Author(s):  
Patrícia V. Almeida ◽  
Rafaela P. Rodrigues ◽  
Leonor M. Teixeira ◽  
Andreia F. Santos ◽  
Rui C. Martins ◽  
...  

The agro-industry of tomato generates three types of residues: ripe rotten tomato (unfit for consumption) (RT), green (unripe) tomato (GT), and tomato branches including leaves and stems (TB). These materials are commonly wasted or used as feed for livestock. Energy production through anaerobic digestion is an alternative way to manage and simultaneously valorise these materials. Initially, the operating conditions of mono anaerobic digestion were investigated using RT. Thus, a design of experiments based on a two-level fractional factorial design with resolution V was performed to determine the factors that affect biochemical methane potential (BMP). The substrate to inoculum ratio (SIR), total volatile solids concentration (VSt), working volume (WV), presence of nutrients (Nu), and the pre-incubation of the inoculum (Inc) were investigated. The results showed that SIR is the most important factor. The maximum BMP for RT was 297 NmLCH4/gVS with SIR = 0.5; tVS = 20 g/L; WV = 20%; no pre-incubation and the presence of nutrients. Using these optimum operating conditions, co-digestion was investigated through a mixture design approach. The substrates RT and GT presented similar BMP values, whereas TB led to a significantly lower BMP. Indeed, when high concentrations of TB were used, a significant decrease in methane production was observed. Nonetheless, the highest BMP was achieved with a mixture of 63% RT + 20% GT + 17% TB, with a production of 324 NmLCH4/gVS, corresponding to a synergetic co-digestion performance index of about 1.20. In general, although the substrate RT generates the highest BMP, the mixture with GT did not impair the methane yield. Overall, the co-digestion of tomato residues must be conducted with SIR close to 0.5 and the content of tomato branches in the reaction mixture should be kept low (up to 20%).

2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2491
Author(s):  
Ashton B. Mpofu ◽  
Victoria A. Kibangou ◽  
Walusungu M. Kaira ◽  
Oluwaseun O. Oyekola ◽  
Pamela J. Welz

Anaerobic digestion is considered unsuitable for the bioremediation of tannery effluent due to process inhibition, mainly due to high concentrations of sulfur species, and the accumulation of H2S and/or NH3. This study using the standardized biochemical methane potential protocol showed that efficient processing is possible with slaughterhouse wastewater, provided sufficient functional biomass is present at the start of the process and the SO42− concentration is below inhibition threshold. Methanogenic activity (K = 13.4–17.5 and µm = 0.15–0.27) and CH4 yields were high when reactors were operated ISR ≥ 3 and/or lower SO42− ≤ 710 mg/L while high SO42− ≥ 1960 mg/L and ISR < 3.0 caused almost complete inhibition regardless of corresponding ISR and SO42−. The theoretical optimum operating conditions (922 mg/L SO42−, ISR = 3.72) are expected to generate 361 mL biogas/gVS, 235 mL CH4/gVS with reduction efficiencies of 27.5% VS, 27.4% TS, 75.1% TOC, 75.6% SO42−, and 41.1% COD. This implies that tannery sludge will be reduced by about 27% (dry mass) and SO42− by 76%, with a fraction of it recovered as S0. The models displayed a perfect fit to the cumulative CH4 yields with high precision in the order Logistic > Cone > modified Gompertz > first order.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 648
Author(s):  
Erik Samuel Rosas-Mendoza ◽  
Andrea Alvarado-Vallejo ◽  
Norma Alejandra Vallejo-Cantú ◽  
Raúl Snell-Castro ◽  
Sergio Martínez-Hernández ◽  
...  

The aim of this paper is to describe a study of the anaerobic digestion of industrial citrus solid waste (ISCW) in both batch and semi-continuous modes for the production of bioenergy without the elimination of D-limonene. The study was conducted at the pilot plant level in an anaerobic reactor with a working volume of 220 L under mesophilic conditions of 35 ± 2 °C. Cattle manure (CM) was used as the inoculum. Three batches were studied. The first batch had a CM/ISCW ratio of 90/10, and Batches 2 and 3 had CM/ISCW ratios of 80/20 and 70/30, respectively. In the semi-continuous mode an OLR of approximately 8 g total chemical oxygen demand (COD)/Ld (4.43 gVS/Ld) was used. The results showed that 49%, 44%, and 60% of volatile solids were removed in the batch mode, and 35% was removed in the semi-continuous mode. In the batch mode, 0.322, 0.382, and 0.316 LCH4 were obtained at STP/gVSremoved. A total of 24.4 L/d (34% methane) was measured in the semi-continuous mode. Bioenergy potentials of 3.97, 5.66, and 8.79 kWh were obtained for the respective batches, and 0.09 kWh was calculated in the semi-continuous mode. The citrus industry could produce 37 GWh per season. A ton of processed oranges has a bioenergy potential of 162 kWh, which is equivalent to 49 kWh of available electricity ($3.90).


2020 ◽  
Vol 12 (18) ◽  
pp. 7463
Author(s):  
Marie E. Kirby ◽  
Muhammad W. Mirza ◽  
James Davies ◽  
Shane Ward ◽  
Michael K. Theodorou

Chicken manure is an agricultural by-product that is a problematic feedstock for anaerobic digestion due to its high nitrogen content inhibiting methane yields. This research examines a novel pilot-scale method of ammonia stripping, the nitrogen recovery process (NRP) developed by Alchemy Utilities Ltd. The NRP was designed to remove and recover nitrogen from chicken manure and two different operating conditions were examined. Both operating conditions demonstrated successful nitrogen removal and recovery. The biochemical methane potential assays were used to compare the digestibility of the NRP-treated chicken manures to that of a fresh chicken manure control. Overall, the biochemical methane potential assays demonstrated that some NRP-treated chicken manure treatments produced significantly more methane compared to untreated manure, with no inhibition occurring in relation to ammonium. However, some of the NRP-treated chicken manures produced similar or lower methane yields compared to fresh chicken manure. The NRP requires further development to improve the efficiency of the pilot-scale unit for commercial-scale operation and longer-term continuous anaerobic digestion trials are required to determine longer-term methane yield and ammonium inhibition effects. However, these initial results clearly demonstrate the technology’s potential and novel application for decentralised, on-farm nitrogen recovery and subsequent anaerobic digestion of chicken manure.


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2020 ◽  
Vol 7 (3) ◽  
pp. 106
Author(s):  
Harald Wedwitschka ◽  
Daniela Gallegos Ibanez ◽  
Franziska Schäfer ◽  
Earl Jenson ◽  
Michael Nelles

Chicken manure is an agricultural residue material with a high biomass potential. The energetical utilization of this feedstock via anaerobic digestion is an interesting waste treatment option. One waste treatment technology most appropriate for the treatment of stackable (non-free-flowing) dry organic waste materials is the dry batch anaerobic digestion process. The aim of this study was to evaluate the substrate suitability of chicken manure from various sources as feedstock for percolation processes. Chicken manure samples from different housing forms were investigated for their chemical and physical material properties, such as feedstock composition, permeability under compaction and material compressibility. The permeability under compaction of chicken manure ranged from impermeable to sufficiently permeable depending on the type of chicken housing, manure age and bedding material used. Porous materials, such as straw and woodchips, were successfully tested as substrate additives with the ability to enhance material mixture properties to yield superior permeability and allow sufficient percolation. In dry anaerobic batch digestion trials at lab scale, the biogas generation of chicken manure with and without any structure material addition was investigated. Digestion trials were carried out without solid inoculum addition and secondary methanization of volatile components. The specific methane yield of dry chicken manure was measured and found to be 120 to 145 mL/g volatile solids (VS) and 70 to 75 mL/g fresh matter (FM), which represents approximately 70% of the methane potential based on fresh mass of common energy crops, such as corn silage.


1997 ◽  
Vol 35 (10) ◽  
pp. 207-211 ◽  
Author(s):  
H. B. Choi ◽  
K. Y. Hwang ◽  
E. B. Shin

This research investigates the effect of sludge pretreatment on the anaerobic digestion of waste-activated sludge (WAS). In the key of this sludge pretreatment process, bacteria in the WAS were ruptured by mechanical jet and smashed under pressurized conditions. The protein concentrations in the sludge varied significantly after pretreatment. Protein concentration increased according to jet times and pressure. In batch experiments, volatile solids (VS) removal efficiencies were 13∼50% when the WAS pretreated once under 30 bar was fed into an anaerobic digester with 2∼26 day retention time. In the same operating conditions, when intact WAS was fed into the digester, VS removal efficiencies were 2∼35%. Therefore, it is recognized that higher digestion efficiencies of the WAS were obtained through a mechanical pretreatment of sludge.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 253-258 ◽  
Author(s):  
A. Pierkiel ◽  
J. Lanting

Membrane-coupled anaerobic digestion utilizes a concept of simultaneous sludge digestion and thickening. Membranes may successfully be applied to eliminate the need for thickening polymers and avoid their likely inhibitory effect on anaerobic biomass. A 550 L completely mixed anaerobic digester was operated under mesophilic conditions (35 °C). Two ultrafiltration membrane systems were evaluated for their potential in membrane-coupled anaerobic digestion: vibrating and cross flow. A volatile solids reduction of 59% was achieved at an average mixed liquor suspended solids concentration of 1.8%. The substrate utilization rate was 1.3 d−1. The vibrating membrane operated at a flux of 1.6–2.0 m3/m2-d and the tubular membrane fluxes in the range 3.4–3.6 m3/m2-d.


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 40 ◽  
Author(s):  
Anette T. Jansson ◽  
Regina J. Patinvoh ◽  
IIona Sárvári Horváth ◽  
Mohammad J. Taherzadeh

A large volume of food is being wasted every year, while the pulp and paper industry also generate a large amount of solid wastes on a daily basis, causing environmental challenges around the world. Dry anaerobic digestion (AD) of these solid wastes is a cost-effective method for proper management. However, dry digestion of these waste streams has been restricted due to their complex structure, the presence of possible inhibitors and inappropriate operating conditions. In light of this fact, dry digestion of food waste (FW) and paper wastes (PW) was conducted at different total solid (TS) concentrations of reactor mixtures of 14%, 16%, 18% and 20% TS, corresponding to substrate to inoculum (S/I) ratio of 0.5 and 1; investigating the optimum operating conditions for effective dry digestion of these complex wastes. The highest methane yields of 402 NmlCH4/gVS and 229 NmlCH4/gVS were obtained from digestion of FW and PW, respectively at 14%TS corresponding to an S/I ratio of 0.5. Increasing the S/I ratio from 0.5 to 1 and thereby having a TS content of 20% in the reactor mixtures was unfavorable to the digestion of both substrates.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Vidhya Prabhudessai ◽  
Anasuya Ganguly ◽  
Srikanth Mutnuri

The focus of our work is on anaerobic digestion of locally available agro wastes like coconut oil cake, cashew apple waste, and grass from lawn cuttings. The most productive agro waste, in terms of methane yield, was coconut oil cake and grass. The results showed that the initial volatile solids concentration significantly affected the biogas production. The methane yield from coconut oil cake was found to be 383 ml CH4/g VS and 277 ml CH4/g VS added at 4 and 4.5 g VS/l. In case of grass the biogas production increased with increasing VS concentrations with methane yield of 199, 250, 256, 284, and 332 ml CH4/g VS at 3, 3.5, 4, 4.5, and 5.0 g VS/l. For cashew apple waste single-stage fermentation inhibited biogas production. However, phase separation showed methane yield of 60.7 ml CH4/g VS and 64.6 ml CH4/g VS at 3.5 and 4.0 g VS/l, respectively. The anaerobic biodegradability of coconut oil cake was evaluated in fed batch mode in a 5 L anaerobic reactor at 4 g VS/L per batch, and the maximum methane yield was found to be 320 ml CH4/g VS.


Sign in / Sign up

Export Citation Format

Share Document