scholarly journals Control Measures of Pathogenic Microorganisms and Shelf-Life Extension of Fresh-Cut Vegetables

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 655
Author(s):  
Jeong Yeon Lee ◽  
So Young Yang ◽  
Ki Sun Yoon

We investigated the combined effect of using slightly acidic electrolyzed water (SAEW), ultrasounds (US), and ultraviolet-C light-emitting diodes (UV-C LED; 275 nm) for decreasing pathogenic Escherichia coli and Staphylococcus aureus (SEA) in fresh-cut vegetables, including carrots, celery, paprika, and cabbage. Survival of pathogenic E. coli and SEA and quality properties of fresh-cut vegetables at 5 and 15 °C for 7 days were also investigated. When combined treatment (SAEW + US + UV-C LED) was applied to fresh-cut vegetables for 3 min, its microbial reduction effect was significantly higher (0.97~2.17 log CFU/g) than a single treatment (p < 0.05). Overall, the reduction effect was more significant for SEA than for pathogenic E. coli. At 5 °C, SAEW + US and SAEW + US + UV-C LED treatments reduced populations of pathogenic E. coli and SEA in all vegetables. At 15 °C, SAEW + US + UV-C LED treatment inhibited the growth of both pathogens in carrot and celery and extended the shelf life of fresh-cut vegetables by preventing color changes in all vegetables. Although the effects of treatments varied depending on the characteristics of the vegetables and pathogens, UV-C LED can be suggested as a new hurdle technology in fresh-cut vegetable industry.

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3705
Author(s):  
María L. Zambrano-Zaragoza ◽  
David Quintanar-Guerrero ◽  
Ricardo M. González-Reza ◽  
María A. Cornejo-Villegas ◽  
Gerardo Leyva-Gómez ◽  
...  

The objective of this study was to evaluate the effectiveness of a combination of UV-C disinfection treatment and a nano-coating lemon essential oil nanocapsules. The nanocapsules were prepared by ionic gelation with an alginate-pectin wall and the lemon essential oil had a particle size of 219 ± 22 nm and a zeta potential of −7.91 ± 0.18 mV. The lemon essential oil had an encapsulation efficiency of 68.19 ± 1.18%. The fresh-cut cucumber was stored for 15 days at 4 °C. Six formulations of nanocapsules were evaluated, and hydroxypropyl methylcellulose was used as matrix polysaccharide in four coatings. Three formulations were treated with UV-C at 4.5 kJ/m2. The results showed that the combination of UV-C and nano-coatings (lemon essential oil = 200 mg/L) increased the shelf life by up to 15 days. Using UV-C and nano-coatings, the ∆E value was 7.12 at the end of the storage period, while the Control samples had an ∆E of 28.1. With nano-coating treatment, the amount of polyphenols decreased by 23% within 9 days. In contrast, with combined UV-C and nano-coating treatment, the amount of polyphenols was reduced by 38.84% within 15 days. The antioxidant capacity remained stable at 459 μmol TE/100 g for the fresh product when the combined treatment was used. A good correlation was also observed between the increasing of the fruit’s shelf life and decreasing of its enzymatic activity. The inclusion of UV-C treatment contributed to the reduction in the initial total bacteria at 3.30 log CFU/g and its combination with nano-coatings helped in the control of microbial growth during storage.


2019 ◽  
Vol 26 (2) ◽  
pp. 140-150
Author(s):  
Elena Collado ◽  
Tâmmila Venzke Klug ◽  
Ginés Benito Martínez-Hernández ◽  
Francisco Artés-Hernández ◽  
Ascensión Martínez-Sánchez ◽  
...  

Faba beans have a short shelf life which is even reduced after fresh-cut processing mainly due to browning and dehydration. In that sense, the effects of a UV-C treatment (3 kJ m−2), compared with non-exposed beans (CTRL), were studied on the sensory and microbial quality, and bioactive and anti-nutritional content of fresh-cut faba beans (cv. Muchamiel) during storage at 5 ℃. The effect of a domestic microwaving (3 min, 900 W) on bioactive and anti-nutritional compounds of fresh seeds prior to consumption at each sampling time was also studied. UV-C treatment extended the fresh-cut faba bean shelf life from 7 to 10 days with browning score (the main sensory parameter adversely affected) of 8 and 1 log unit lower than CTRL at day 10. UV-C did not negatively affect the total antioxidant capacity of samples during storage. The phytic acid and raffinose contents decreased by 30/40%, respectively, after 10 days, without influence of the UV-C treatment. Microwaving reduced the phytic acid and condensed tannins contents by 30% in those samples stored for up to six days, with low microwaving effect in the last storage days. Nevertheless, UV-C improved the condensed tannins reductions through storage (≈30%) compared with non-irradiated samples.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3222
Author(s):  
César A. Lázaro ◽  
Maria Lúcia G. Monteiro ◽  
Carlos A. Conte-Junior

This study investigated the isolated effect of modified atmosphere packaging (MAP; 50% CO2 and 50% N2) and ultraviolet radiation (UV; 0.30 J/cm2) as well as their combined (MAP/UV) effect on reduction of Salmonella typhimurium and Escherichia coli O157:H7, biogenic amines (BA), and on shelf life of tilapia fillets stored at 4 ± 1 °C for 10 days. UV samples had the highest reduction of S. typhimurium (1.13 log colony forming units/g; CFU/g) and E. coli O157:H7 (0.70 log CFU/g). MAP and MAP/UV reduced the growth of S. typhimurium in 0.50 log CFU/g and did not affect the growth of E. coli O157:H7. UV, MAP, and MAP/UV increased lag phase and/or generation time of all evaluated bacterial groups, decreased pH values, ammonia formation, texture changes, and, in general, the BA formation throughout storage period, and, therefore, UV, MAP, and MAP/UV extended the shelf life for two, three, and at least five days, respectively. MAP/UV, MAP, and UV decreased redness, MAP/UV and MAP increased yellowness and lipid oxidation, while UV did not affect it. MAP/UV demonstrated promising results for shelf life extension; however, different gas ratios in combination with other ultraviolet radiation type C (UV-C) doses should be investigated to reach the highest microbiological safety and maintenance of the overall quality of tilapia fillets.


LWT ◽  
2014 ◽  
Vol 56 (2) ◽  
pp. 341-350 ◽  
Author(s):  
Mauricio E. Martiñon ◽  
Rosana G. Moreira ◽  
M. Elena Castell-Perez ◽  
Carmen Gomes

Food Control ◽  
2008 ◽  
Vol 19 (2) ◽  
pp. 191-199 ◽  
Author(s):  
G. Oms-Oliu ◽  
R.M. Raybaudi-Massilia Martínez ◽  
R. Soliva-Fortuny ◽  
O. Martín-Belloso

Sign in / Sign up

Export Citation Format

Share Document