scholarly journals Carbon Dioxide Pretreatment and Cold Storage Synergistically Delay Tomato Ripening through Transcriptional Change in Ethylene-Related Genes and Respiration-Related Metabolism

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 744
Author(s):  
Me-Hea Park ◽  
Sun-Ju Kim ◽  
Jung-Soo Lee ◽  
Yoon-Pyo Hong ◽  
Seung-Hun Chae ◽  
...  

The effects of CO2 pretreatment before cold storage on tomato quality were investigated using physicochemical and transcriptome changes. Harvested tomatoes were treated with 30% or 60% CO2 for 3 h before storage at 4 °C for 14 d (cold storage), followed by transfer to 20 °C for 8 d (ambient conditions). The CO2-treated fruits were firmer with a better appearance than untreated fruits, even after being transferred from 4 °C storage to 20 °C for 8 d. CO2 pretreatment coupled with cold storage synergistically delayed tomato ripening by reducing respiration and lowering lycopene production. The tomatoes treated with 30% and 60% CO2 had fewer pits than untreated fruits after cold storage, even after being transferred to ambient conditions. Moreover, the 60% CO2 treatment significantly suppressed the decay rate. Transcriptome and metabolome functional enrichment analyses commonly showed the involvement of CO2-responsive genes or metabolites in sucrose and starch metabolism, as well as biosynthesis of secondary metabolites—in particular, glycolysis reduction. The most frequently detected domain was the ethylene-responsive factor. These results indicate that altered ethylene biosynthesis and ethylene signaling, via ethylene-responsive transcription factors and respiration-related pathways, appear to control CO2-induced fruit quality.

Author(s):  
Me-Hea Park ◽  
Sun-Ju Kim ◽  
Jung-Soo Lee ◽  
Yoon-Pyo Hong ◽  
Seung-Hun Chae ◽  
...  

The effect of CO2 pre-treatments on tomato quality prior to cold storage was investigated using physiochemical and transcriptome changes. Three hours CO2 treated fruits were firmer than untreated fruits and had a good appearance even after being transferred from 4°C storage to 20°C for 8 d. CO2 pretreatment with cold storage showed a synergistic effect on delayed ripening through reduced respiration; these tomatoes exhibited a lower lycopene content than untreated fruit under cold storage. Tomatoes treated with 30% CO2 had fewer pits than untreated fruits subjected to chilling temperatures, even after being transferred to 20°C for 8 d. Functional enrichment analyses from transcriptome and metabolome commonly showed that CO2-responsive genes or metabolites were involved in the sucrose and starch and biosynthesis of secondary metabolisms. The most frequently detected domain, ethylene-responsive factor domain and reduced glycolysis provide insights into the mechanism that CO2 regulates tomato quality.


2021 ◽  
pp. 10-19
Author(s):  
Asnawi Asnawi ◽  
Maskur Maskur ◽  
Adji Santoso Dradjat

The purpose of this study were to compare the quality of spermatozoa stored at 26⁰C, 5⁰C using diluents of NaCl, 10% glucose and 5% glucose. The spermatozoa of a rooster was collected and divided into 6 parts, each 2 tubes diluted in a ratio of 1:1 using NaCl, Glucose5% and Glucose 10%, then each 3 tubes with different diluents were stored at 26⁰C and 5⁰C. Observations of motility, viability and abnormalities of spermatozoa were carried out half an hour, 1 hour after dilution, followed every 2 hours until the ninth hours. The results showed that spermatozoa stored for 9 hours at a temperature of 26⁰C with a physiological diluent of NaCl, 10% Glucose and 5% Glucose each were different (P, < 0.05) with motility 50 ± 0.0%, 42 ± 10.95. % and 34±8.94%, respectively. At storage temperature of 5⁰C for 9 hours, physiological NaCl, 10% glucose and 5% glucose were significantly different (P<0.05) with motility 58.00±10.95%, 46.00±8.94% and 38.00±, respectively. 10.95% in a row. The viability of spermatozoa at 26⁰C storage with 5% glucose diluent was better than 10% glucose and physiological NaCl (P<0.05), 58.93±1.27%, 42.93±1.48% and 33.43±1.27% , while the physiological NaCl diluent and 10% glucose were not significantly different (P>0.05). At 5⁰C storage the viability of spermatozoa in the three diluents was not significantly different, with values of Glucose 10%, Glucose 5% and physiological NaCl 52.57±5.15%, 52.21±5.02% and 48.14±8.09%, respectively. Spermatozoa abnormalities at storage temperature 26⁰C and 5⁰C for 9 hours using physiological NaCl diluent, 5% glucose and 10% glucose, were not significantly different and varied between 5 to 10%. Finally, it can be concluded that at room temperature storage less than 4 hours the quality of spermatozoa was better with 5% glucose diluent, while for cold storage beyond 4 hours the quality of spermatozoa with NaCl diluent was higher


2016 ◽  
Vol 29 (3) ◽  
pp. 629-641 ◽  
Author(s):  
JOÃO ALISON ALVES OLIVEIRA ◽  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
DALMO LOPES DE SIQUEIRA ◽  
PAULO ROBERTO CECON

ABSTRACT The objective of this work was to evaluate the tolerance of fruits of different banana cultivars to low temperature storages. Fruits of the cultivars Nanicão (AAA), Prata (AAB), Vitória (AAAB), Maçã (AAB) and Caipira (AAA) were used. Clusters of three fruits were kept in cold storage for 7, 14 and 21 days, with average temperature of 10.53±0.37°C and relative humidity of 85%. Subsequently, the clusters were transferred to temperatures of 22±0.39°C and evaluated for 16 days. The fruits of all cultivars remained green after 21 days of storage at 10.53±0.37°C. Fruits of the cultivar Nanicão did not completely ripened after transferred to the 22°C storage, when stored for 7 days at low temperature. These fruits were firmer, with green peel and low soluble solids and titratable acidity. The fruits of all cultivars complete the ripening when transferred to room temperature after 21 days of cold storage. Chilling injuries increased with cold storage time in all cultivars. The cultivars Nanicão, Caipira and Maçã had more symptoms of chilling injury, while Prata and Vitória were more tolerant to the cold storage (10.53°C) for up to 21 days, showing normal ripening after transferred to the 22±0.39°C storage.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Susan R. Leonard ◽  
Ivan Simko ◽  
Mark K. Mammel ◽  
Taylor K. S. Richter ◽  
Maria T. Brandl

Abstract Background Lettuce is linked to recurrent outbreaks of Shiga toxin-producing Escherichia coli (STEC) infections, the seasonality of which remains unresolved. Infections have occurred largely from processed lettuce, which undergoes substantial physiological changes during storage. We investigated the microbiome and STEC O157:H7 (EcO157) colonization of fresh-cut lettuce of two cultivars with long and short shelf life harvested in the spring and fall in California and stored in modified atmosphere packaging (MAP) at cold and warm temperatures. Results Inoculated EcO157 declined significantly less on the cold-stored cultivar with short shelf life, while multiplying rapidly at 24 °C independently of cultivar. Metagenomic sequencing of the lettuce microbiome revealed that the pre-storage bacterial community was variable but dominated by species in the Erwiniaceae and Pseudomonadaceae. After cold storage, the microbiome composition differed between cultivars, with a greater relative abundance (RA) of Erwiniaceae and Yersiniaceae on the cultivar with short shelf life. Storage at 24 °C shifted the microbiome to higher RAs of Erwiniaceae and Enterobacteriaceae and lower RA of Pseudomonadaceae compared with 6 °C. Fall harvest followed by lettuce deterioration were identified by recursive partitioning as important factors associated with high EcO157 survival at 6 °C, whereas elevated package CO2 levels correlated with high EcO157 multiplication at 24 °C. EcO157 population change correlated with the lettuce microbiome during 6 °C storage, with fall microbiomes supporting the greatest EcO157 survival on both cultivars. Fall and spring microbiomes differed before and during storage at both temperatures. High representation of Pantoea agglomerans was a predictor of fall microbiomes, lettuce deterioration, and enhanced EcO157 survival at 6 °C. In contrast, higher RAs of Erwinia persicina, Rahnella aquatilis, and Serratia liquefaciens were biomarkers of spring microbiomes and lower EcO157 survival. Conclusions The microbiome of processed MAP lettuce evolves extensively during storage. Under temperature abuse, high CO2 promotes a lettuce microbiome enriched in taxa with anaerobic capability and EcO157 multiplication. In cold storage, our results strongly support a role for season and lettuce deterioration in EcO157 survival and microbiome composition, suggesting that the physiology and microbiomes of fall- and spring-harvested lettuce may contribute to the seasonality of STEC outbreaks associated with lettuce grown in coastal California.


HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 705-707 ◽  
Author(s):  
Douglas D. Archbold ◽  
Thomas R. Hamilton-Kemp ◽  
Ann M. Clements ◽  
Randy W. Collins

Seedless table grapes (Vitis vinifera L.) cv. Crimson Seedless were exposed to (E)-2-hexenal vapor during cold storage to determine its potential as a fumigant for long-term control of postharvest mold. Fruit were fumigated with 0.86 or 1.71 mmol (100 or 200 μL neat compound, respectively) (E)-2-hexenal per 1.1-L container for 2 weeks during 2 °C storage. Containers were moved to 20 °C storage after 4, 8, and 12 weeks for determination of mold incidence and berry quality over 12 days. The headspace concentration of (E)-2-hexenal, measured by gas chromatography, reached a maximum of 2.5 and 4.2 μmol·L–1 for 0.86 and 1.71 mmol per container, respectively, after 1 day and declined to <1 μmol·L–1 for both treatments by 14 days. Upon removal from cold storage at 4, 8, and 12 weeks, the incidence of mold was significantly lower for (E)-2-hexenal–treated fruit. Control of mold by (E)-2-hexenal fumigation persisted through 12 days of 20 °C storage, even though mold generally increased in all treatments. The two levels of (E)-2-hexenal were similar in their suppression of mold. Fumigation did not affect O2 or CO2 concentrations within the containers, nor were fruit firmness or soluble solids content affected. Postharvest fumigation of seedless table grapes with the natural volatile compound (E)-2-hexenal shows promise for control of mold.


2008 ◽  
Vol 133 (2) ◽  
pp. 290-299 ◽  
Author(s):  
Ahmad Sattar Khan ◽  
Zora Singh

This research was carried out to extend the postharvest storage of japanese plum (Prunus salicina Lindl. cv. Tegan Blue), which has a short shelf life limiting its export potential. The effects of 1.0 μL·L−1 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP), alone or in combination, on quality of mature japanese plum fruit during storage (0 ± 1 °C and 90% ± 5% relative humidity) were investigated. The activities of enzymes of ethylene biosynthesis [1-aminocyclopropane-1-carboxylic acid synthase (ACS), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), and 1-aminocyclopropane-1-carboxylic acid (ACC) content] and those of cell wall-associated enzymes [exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), and endo-1,4-β-D-glucanase (EGase)] were also measured. 1-MCP-treated fruit stored in normal atmosphere or in MAP had lower ACC content and inhibited ethylene production with reduced ACS and ACO activities compared with fruit stored in MAP and in normal atmosphere. Similarly, 1-MCP-treated fruit, stored either in normal atmosphere or in MAP, were firmer with reduced exo-PG, endo-PG, PE, and EGase activities compared with fruit stored in MAP and in normal atmosphere. During storage as well as during ripening, fruit stored in MAP exhibited a higher rate of respiration compared with other treatments. MAP exacerbated the effect of 1-MCP in reduction of ethylene production and fruit softening. 1-MCP application in combination with MAP after 5 and 7 weeks of storage delayed the fruit ripening by 10 and 8 days in contrast with control fruit, respectively. During storage, and as well as in ripe fruit, weight loss was reduced in fruit stored in MAP either with or without 1-MCP application. Control fruit and 1-MCP-treated fruit, stored in a normal atmosphere or in MAP, had the same values for the following parameters: chromaticity value L*, C*, and hue angle, titratable acidity, and concentrations of soluble solids, ascorbic acid, and total antioxidants. In conclusion, 1-MCP application in combination with MAP can be used effectively to reduce the ethylene biosynthesis and fruit softening during cold storage and to extend the storage life up to 7 weeks followed by 8 d of ripening without any adverse effects on the quality of ripe fruit.


2020 ◽  
Vol 30 (6) ◽  
pp. 773-780
Author(s):  
Francisco E. Loayza ◽  
Michael T. Masarirambi ◽  
Jeffrey K. Brecht ◽  
Steven A. Sargent ◽  
Charles A. Sims

This study investigated the effect of ethylene treatment at high temperatures of 30 to 40 °C for up to 72 hours on subsequent ripening-associated processes in mature green ‘Sunny’ and ‘Agriset 761’ tomatoes (Solanum lycopersicum). Compared with ethylene-treated fruit at 20 °C, ethylene exposure at 30 or 35 °C stimulated ripening in terms of ethylene biosynthesis and color development, but the ethylene effect was only apparent after transfer to air at 20 °C. There were no negative effects on ripe tomato quality related to ethylene exposure at 30 or 35 °C. However, ethylene production of tomatoes was permanently impaired by ethylene exposure at 40 °C for 48 or 72 hours even after transferring fruit to air at 20 °C; these fruit exhibited slow softening and color development. Our results suggest that tomatoes perceive ethylene at 30 to 35 °C despite impairment of ripening at those temperatures, with the accelerated ripening response becoming apparent only after transferring the tomatoes to air at lower temperature.


Sign in / Sign up

Export Citation Format

Share Document