scholarly journals Transcriptome Characterization and Expression Profiles of Disease Defense-Related Genes of Table Grapes in Response to Pichia anomala Induced with Chitosan

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1451
Author(s):  
Wanying Hu ◽  
Esa Abiso Godana ◽  
Meiqiu Xu ◽  
Qiya Yang ◽  
Solairaj Dhanasekaran ◽  
...  

Transcriptome analysis (TA) was conducted to characterize the transcriptome changes in postharvest disease-related genes of table grapes following treatment with Pichia anomala induced with chitosan (1% w/v). In the current study, the difference in the gene expression of table grapes after treatment with P. anomala induced with chitosan and that of a control group was compared 72 h post-inoculation. The study revealed that postharvest treatment of table grapes with P. anomala induced with chitosan could up-regulate genes that have a pivotal role in the fruit’s disease defense. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results also confirmed that GO terms and the KEGG pathways, which have pivotal roles in plant disease resistance, were significantly enriched. The up-regulated genes of the treatment group have a unique function in the fruit’s disease resistance compared to the control group. Generally, most genes in the plant–pathogen interaction pathway; the plant Mitogen-activated protein kinase (MAPK) signaling pathway; the plant hormone signal transduction pathway; the pathway of glutathione metabolism; the pathway of phenylalanine, tyrosine, and tryptophan biosynthesis; and the pathway of flavonoid biosynthesis were all up-regulated. These up-regulations help the fruit to synthesize disease-resistant substances, regulate the reactive oxygen species (ROS), enhance the fruit cell wall, and enrich hormone signal transduction during the pathogen’s attack. This study is useful to overcome the lags in applying transcriptomics technology in postharvest pathology, and will provide insight towards developing other alternative methods to using bio-pesticides to control postharvest diseases of perishables.

Author(s):  
He Rui ◽  
Chang Yin Dong ◽  
Wang Jian Ming

A plant’s early response to pathogen stress is a vital indicator of its disease resistance. In order to study the response mechanism of resistant and susceptible flax cultivars to Fusarium oxysporum f. sp. lini (Foln), we applied RNA-sequencing to analyze transcriptomes of flax with Foln 0.5, 2 and 8 hours post inoculation (hpi). We found a significant difference in the number of differential expression genes (DEGs) between resistant and susceptible flax clutivars. The number of DEGs in the Fusarium-resistant cultivar increased dramatically at 2 hpi, and a large number of DEGs participated in the Fusarium-susceptible cultivar response to Foln infection 0.5 hpi. GO enrichment analysis determined that the up-regulated DEGs of both flax cultivars were enriched such as oxidoreductase activity and oxidation-reduction process. At the same time, the genes involved in diterpenoid synthesis were up-regulated in resistant cultivar, while those involved in extracellular region, cell wall and organophosphate ester transport were down-regulated in susceptible cultivar. KEGG enrichment analysis showed the genes encoded WRKY 22 and WRKY33 which involved in MAPK signaling pathway were up-regulated expressed in S-29 and down-regulated expressed in R-7, negatively regulated the disease resistance of flax; The genes encoded Hsp 90 family which in involved in plant pathogen interaction pathway were up-regulated in R-7 and down-regulated in S-29, which positively regulated the disease resistance of flax; The genes encoded MYC2 transcription factor and TIFY proteins which involved in plant hormone signaling pathway were up-regulated in R-7, and regulated the jasmonic acid metabolism of flax and the signal transduction of plant hormones. Meanwhile seven regulatory genes with the most correlation were screened out, Among Lus10025000.g and Lus10026447.g regulated other genes expressed both in plant hormone signal transduction pathway and MAPK signal pathway. In conclusion, these findings will facilitate further studies on the function of these candidate genes in flax of response to Fusarium stress, and the breeding of disease-resistant flax cultivar.


2021 ◽  
Vol 12 ◽  
Author(s):  
Esa Abiso Godana ◽  
Qiya Yang ◽  
Lina Zhao ◽  
Xiaoyun Zhang ◽  
Jizhan Liu ◽  
...  

To study the mechanism by which Pichia anomala induced with chitosan (1% w/v) controls blue mold disease in table grapes caused by Penicillium expansum, this study evaluated alterations in three yeast enzymatic activities. The changes in the five primary disease defense-related enzymes and two non-enzyme activities of table grapes were assayed. The results of the study showed that chitosan (1% w/v) significantly increased the yeast β-1,3-glucanase, catalase (CAT), and malondialdehyde (MDA) activities. Furthermore, P. anomala alone or induced with chitosan (1% w/v) significantly increased the table grapes enzymatic activities of Polyphenol oxidase (PPO), phenylalanine (PAL), peroxidase (POD), and catalase (CAT) compared to the control. The RT-qPCR results also confirmed that the genes of these major disease defense enzymes were up-regulated when the table grapes were treated with P. anomala. The highest results were recorded when the fruit was treated by yeast induced with chitosan (1% w/v). The phenolic compounds, in addition to their nutritional value, can also increase the antimicrobial properties of table grapes. The current experiment determined that the total phenol and flavonoid contents of table grapes showed the highest results for fruits treated by P. anomala induced with chitosan compared with the control. Generally, the increment of these fruit enzymatic and non-enzymatic activities shows improved table grape defense against the pathogenic fungus. The induction of the yeast with chitosan also increases its bio-control efficacy against the pathogen. This study will enable future detailed investigation in the yeast pathogen control mechanisms and the use of yeasts as bio-pesticides.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1705
Author(s):  
András Künstler ◽  
Gábor Gullner ◽  
Attila L. Ádám ◽  
Judit Kolozsváriné Kolozsváriné Nagy ◽  
Lóránt Király

Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.


Sign in / Sign up

Export Citation Format

Share Document