scholarly journals Differential Gene Expression Analysis of Resistant and Susceptible Flax Cultivars in Response to Fusarium oxysporum Stress

Author(s):  
He Rui ◽  
Chang Yin Dong ◽  
Wang Jian Ming

A plant’s early response to pathogen stress is a vital indicator of its disease resistance. In order to study the response mechanism of resistant and susceptible flax cultivars to Fusarium oxysporum f. sp. lini (Foln), we applied RNA-sequencing to analyze transcriptomes of flax with Foln 0.5, 2 and 8 hours post inoculation (hpi). We found a significant difference in the number of differential expression genes (DEGs) between resistant and susceptible flax clutivars. The number of DEGs in the Fusarium-resistant cultivar increased dramatically at 2 hpi, and a large number of DEGs participated in the Fusarium-susceptible cultivar response to Foln infection 0.5 hpi. GO enrichment analysis determined that the up-regulated DEGs of both flax cultivars were enriched such as oxidoreductase activity and oxidation-reduction process. At the same time, the genes involved in diterpenoid synthesis were up-regulated in resistant cultivar, while those involved in extracellular region, cell wall and organophosphate ester transport were down-regulated in susceptible cultivar. KEGG enrichment analysis showed the genes encoded WRKY 22 and WRKY33 which involved in MAPK signaling pathway were up-regulated expressed in S-29 and down-regulated expressed in R-7, negatively regulated the disease resistance of flax; The genes encoded Hsp 90 family which in involved in plant pathogen interaction pathway were up-regulated in R-7 and down-regulated in S-29, which positively regulated the disease resistance of flax; The genes encoded MYC2 transcription factor and TIFY proteins which involved in plant hormone signaling pathway were up-regulated in R-7, and regulated the jasmonic acid metabolism of flax and the signal transduction of plant hormones. Meanwhile seven regulatory genes with the most correlation were screened out, Among Lus10025000.g and Lus10026447.g regulated other genes expressed both in plant hormone signal transduction pathway and MAPK signal pathway. In conclusion, these findings will facilitate further studies on the function of these candidate genes in flax of response to Fusarium stress, and the breeding of disease-resistant flax cultivar.

2021 ◽  
Author(s):  
Qiming Chen ◽  
Huizhen Dong ◽  
Zhihua Xie ◽  
Kaijie Qi ◽  
Xiaosan Huang ◽  
...  

Abstract Background: Pear is one of the most abundant fruit crops and has been cultivated world-wide. However, the salt injury events caused by increased salinity limited the distribution and sustainable production of pear crops. Therefore, it is needed to take further efforts to understand the genetics and mechanisms of salt tolerance to improved salt resistance and productivity.Results: In this work, we analyzed the dynamic transcriptome of pear (Pyrus ussuriensis Maxim) under salt stress by using RNA-Seq and WGCNA. A total of 3540, 3831, 8374, 6267 and 5381 genes were identified that were differentially expressed after exposure to 200mM NaCl for 4, 6, 12, 24 and 48 hours, respectively, and 1163 genes were shared among the five comparisons. KEGG enrichment analysis of these DEGs (differentially expressed genes) revealed that “MAPK signaling” and “Plant hormone signal transduction” pathways were highly enriched. Meanwhile, 622 DEGs identified from WGCNA were highly correlated with these pathways, and some of them were able to indicate the salt tolerance of pear varieties. In addition, we provide a network to demonstrate the time-sequence of these co-expressed MAPK and hormone related genes.Conclusion: A comprehensive analysis about salt-responsive pear transcriptome were performed by using RNA-Seq and WGCNA. We demonstrated that “MAPK signaling” and “Plant hormone signal transduction” pathways were highly recruited during salt stress, and provided new insights into the metabolism of plant hormones related signaling at transcriptome level underlying salt resistance in pear. The dynamic transcriptome data obtained from this study and these salt-sensitive DEGs may provide potential genes as suitable targets for further biotechnological manipulation to improve pear salt tolerance.


2020 ◽  
Vol 23 (8) ◽  
pp. 805-813
Author(s):  
Ai Jiang ◽  
Peng Xu ◽  
Zhenda Zhao ◽  
Qizhao Tan ◽  
Shang Sun ◽  
...  

Background: Osteoarthritis (OA) is a joint disease that leads to a high disability rate and a low quality of life. With the development of modern molecular biology techniques, some key genes and diagnostic markers have been reported. However, the etiology and pathogenesis of OA are still unknown. Objective: To develop a gene signature in OA. Method: In this study, five microarray data sets were integrated to conduct a comprehensive network and pathway analysis of the biological functions of OA related genes, which can provide valuable information and further explore the etiology and pathogenesis of OA. Results and Discussion: Differential expression analysis identified 180 genes with significantly expressed expression in OA. Functional enrichment analysis showed that the up-regulated genes were associated with rheumatoid arthritis (p < 0.01). Down-regulated genes regulate the biological processes of negative regulation of kinase activity and some signaling pathways such as MAPK signaling pathway (p < 0.001) and IL-17 signaling pathway (p < 0.001). In addition, the OA specific protein-protein interaction (PPI) network was constructed based on the differentially expressed genes. The analysis of network topological attributes showed that differentially upregulated VEGFA, MYC, ATF3 and JUN genes were hub genes of the network, which may influence the occurrence and development of OA through regulating cell cycle or apoptosis, and were potential biomarkers of OA. Finally, the support vector machine (SVM) method was used to establish the diagnosis model of OA, which not only had excellent predictive power in internal and external data sets (AUC > 0.9), but also had high predictive performance in different chip platforms (AUC > 0.9) and also had effective ability in blood samples (AUC > 0.8). Conclusion: The 4-genes diagnostic model may be of great help to the early diagnosis and prediction of OA.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2786-2786
Author(s):  
Xiaomei Chen ◽  
Wei Xiong ◽  
Fang Liu ◽  
Shiang Huang ◽  
Sun Yanqing ◽  
...  

Abstract Abstract 2786 Leukemia-cell-derived microvesicles (MVs) act as vehicles for exchange of genetic information between leukemia and nomal cells, engendering a favorable microenvironment for leukemia development. Within the leukemia mass, all cell types may contribute to MV shedding, but specific contributions to tumor progression have yet to be established. MVs contain microRNAs that could be transferred to target cells inducing epigenetic changes. MicroRNAs are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML)-derived MVs. Given the attributes of MVs and microRNAs in leukemia progression, we therefore aimed to investigate a possible regulatory effect of microRNAs upon MVs as a mean to uncover molecular events involved in promotion of leukemogenesis by MVs. Hnece, we determined the miRNA expression profiles of CML-derived MVs and their parental cells using Agilent miRNA microarray analysis. The six miRNAs obtained by microarray profiling were validated using real-time PCR. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were done for further research. We identified 104 microRNAs aberrantly expressed in both CML-derived MVs and their parental cells, indicating that CML-derived MVs miRNA is the mini version of the parental cells. Target gene-related pathway analyses showed that majority of the 104 microRNAs involved in the signaling pathways associated with leukemia, especially the mitogen-activated protein kinase (MAPK) signaling pathways. We found 34 microRNAs targeted 44 genes of the MAKP pathway, suggesting that the MAPK signaling pathway may commonly function together. By further conducting microRNA gene network analysis, we found that the miR-15a/b, miR-16, miR-17and miR-30 families are likely to play key roles in the regulation of MAPK pathways. The figure showed microRNA-gene interaction networks related to the pathway. The has-miR-30 family (except for hsa-miR-30a hsa-miR-30d) showed that the most target mRNAs, with degrees from 6 to 9, while hsa-miR-17, hsa-miR-16 and hsa-miR-15a/b occupy an important position in the MAPK pathway. The seven microRNAs might play an important role in the pathogenesis of CML. The MAPK pathway is a common point of convergence of many different mitogenic and anti-apoptotic signal transduction pathways in hematopoietic, as well as epithelial, cancer cells and can now be clinically targeted by highly selective small molecule inhibitors. Such deregulation of MAPK pathways contributes to BCR-ABL leukemogenesis, and their targeting with selective inhibitors provides an approach to enhance anti-leukemic responses and/or overcome leukemic cell resistance in CML. A large body of evidence has established that RAS/MAPK signaling contribute to the survival of BCR-ABL positive cells under imatinib selection pressure. It is evident that release of microRNAs from the lumen of MVs can induce activation of specific signal transduction cascades and influence the physiologic state of recipient cells. So the MVs derived from leukemia cells may weaken or enhance the expression of mRNA involved in MAPK pathway in recipient cells, and come to remodel the leukemia niche. In conclusion, we first demonstrated that CML-MVs were enriched with expression changes of distinct sets of miRNAs regulating MAPK sinaling pathway. MAPK sinaling pathway were active in CML-MVs and may commonly function together. We believe that this new correlation among MVs, microRNAs and MAPK pathway can be exploited to both better understand leukemia progression and also suggest novel therapies for leukemias. Fig 1. microRNA-gene interaction networks of MAPK pathway. Blue nodes represent microRNA co-eppressed in MVs from K562 cells and K562 cells, red nodes represent target mRNA. Edges show the regulatory effect of microRNA on mRNA. Fig 1. microRNA-gene interaction networks of MAPK pathway. Blue nodes represent microRNA co-eppressed in MVs from K562 cells and K562 cells, red nodes represent target mRNA. Edges show the regulatory effect of microRNA on mRNA. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ji Wang ◽  
Zhongxiu Yang ◽  
Canming Chen ◽  
Yang Xu ◽  
Hongguang Wang ◽  
...  

Autism is a common disease that seriously affects the quality of life. The role of circular RNAs (circRNAs) in autism remains largely unexplored. We aimed to detect the circRNA expression profile and construct a circRNA-based competing endogenous RNA (ceRNA) network in autism. Valproate acid was used to establish an in vivo model of autism in mice. A total of 1,059 differentially expressed circRNAs (477 upregulated and 582 downregulated) in autism group was identified by RNA sequencing. The expression of novel_circ_015779 and novel_circ_035247 were detected by real-time PCR. A ceRNA network based on altered circRNAs was established, with 9,715 nodes and 150,408 edges. Module analysis was conducted followed by GO and KEGG pathway enrichment analysis. The top three modules were all correlated with autism-related pathways involving “TGF-beta signaling pathway,” “Notch signaling pathway,” “MAPK signaling pathway,” “long term depression,” “thyroid hormone signaling pathway,” etc. The present study reveals a novel circRNA involved mechanisms in the pathogenesis of autism.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ke Chen ◽  
Luojian Zhang ◽  
Zhen Qu ◽  
Feng Wan ◽  
Jia Li ◽  
...  

Weibing Formula 1, a classic traditional formula, has been widely used clinically to treat gastritis in recent years. However, the potential pharmacological mechanism of Weibing Formula 1 is still unclear to date. A network pharmacology-based strategy was performed to uncover the underlying mechanisms of Weibing Formula 1 against gastritis. Furthermore, we structured the drug-active ingredients-genes–disease network and PPI network of shared targets, and function enrichment analysis of these targets was carried out. Ultimately, Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR were used to verify the related genes. We found 251 potential targets corresponding to 135 bioactive components of Weibing Formula 1. Then, 327 gastritis-related targets were known gastritis-related targets. Among which, 60 common targets were shared between potential targets of Weibing Formula 1 and known gastritis-related targets. The results of pathway enrichment analysis displayed that 60 common targets mostly participated in various pathways related to Toll-like receptor signaling pathway, MAPK signaling pathway, cytokine-cytokine receptor interaction pathway, chemokine signaling pathway, and apoptosis. Based on the GSE60427 dataset, 15 common genes were shared between differentially expressed genes and 60 candidate targets. The verification results of the GSE5081 dataset showed that except for DUOX2 and VCAM1, the other 13 genes were significantly upregulated in gastritis, which was consistent with the results in the GSE60427 dataset. More importantly, real-time quantitative PCR results showed that the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly upregulated and NOS2, EGFR, and IL-10 were downregulated in gastritis patients, while the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly downregulated and NOS2, EGFR, and IL-10 were upregulated after the treatment of Weibing Formula 1. PTGS2, NOS2, EGFR, MMP9, CXCL2, CXCL8, and IL-10 may be the important direct targets of Weibing Formula 1 in gastritis treatment. Our study revealed the mechanism of Weibing Formula 1 in gastritis from an overall and systematic perspective, providing a theoretical basis for further knowing and application of this formula in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengde Zhao ◽  
Qining Fu ◽  
Liangzhu Hu ◽  
Yangdong Liu

Objective: The aim was to study the preliminary screening of the crucial genes in intimal hyperplasia in the venous segment of arteriovenous (AV) fistula and the underlying potential molecular mechanisms of intimal hyperplasia with bioinformatics analysis.Methods: The gene expression profile data (GSE39488) was analyzed to identify differentially expressed genes (DEGs). We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DEGs. Gene set enrichment analysis (GSEA) was used to understand the potential activated signaling pathway. The protein–protein interaction (PPI) network was constructed with the STRING database and Cytoscape software. The Venn diagram between 10 hub genes and gene sets of 4 crucial signaling pathways was used to obtain core genes and relevant potential pathways. Furthermore, GSEAs were performed to understand their biological functions.Results: A total of 185 DEGs were screened in this study. The main biological function of the 111 upregulated genes in AV fistula primarily concentrated on cell proliferation and vascular remodeling, and the 74 downregulated genes in AV fistula were enriched in the biological function mainly relevant to inflammation. GSEA found four signaling pathways crucial for intimal hyperplasia, namely, MAPK, NOD-like, Cell Cycle, and TGF-beta signaling pathway. A total of 10 hub genes were identified, namely, EGR1, EGR2, EGR3, NR4A1, NR4A2, DUSP1, CXCR4, ATF3, CCL4, and CYR61. Particularly, DUSP1 and NR4A1 were identified as core genes that potentially participate in the MAPK signaling pathway. In AV fistula, the biological processes and pathways were primarily involved with MAPK signaling pathway and MAPK-mediated pathway with the high expression of DUSP1 and were highly relevant to cell proliferation and inflammation with the low expression of DUSP1. Besides, the biological processes and pathways in AV fistula with the high expression of NR4A1 similarly included the MAPK signaling pathway and the pathway mediated by MAPK signaling, and it was mainly involved with inflammation in AV fistula with the low expression of NR4A1.Conclusion: We screened four potential signaling pathways relevant to intimal hyperplasia and identified 10 hub genes, including two core genes (i.e., DUSP1 and NR4A1). Two core genes potentially participate in the MAPK signaling pathway and might serve as the therapeutic targets of intimal hyperplasia to prevent stenosis after AV fistula creation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Zhang ◽  
Wenjuan Sun ◽  
Linjuan He ◽  
Liqi Wang ◽  
Kai Qiu ◽  
...  

Abstract Background Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. Methods In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. Results As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. Conclusions This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis.


1985 ◽  
Vol 63 (3) ◽  
pp. 638-646 ◽  
Author(s):  
R. Harling ◽  
G. S. Taylor

An anatomical study of infection by Fusarium oxysporum Schlecht. f.sp. dianthi (Prill, et Del.) Snyd. and Hans, in the stems of a resistant carnation (Dianthus caryophyllus L.) cultivar, and a susceptible cultivar, was carried out to determine host structural responses to infection which might be important in resistance to the fungus. Histological examination of stems at 2–24 days following inoculation revealed certain features of infection which were common to both the resistant and the susceptible cultivars. These were colonization of the xylem vessels and surrounding tissues, hyperplasia, hypertrophy and altered cytoplasmic activity of the xylem parenchyma, blockage of vessels with gels, and swelling of the vessel pit membranes between pit pairs. Gel formation was associated with paratracheal parenchyma cells. However, the extent and timing of some of these features were different between the two cultivars. The susceptible cultivar showed extensive colonization and destruction of xylem vessels and surrounding tissues, limited hyperplasia, and limited vascular gelation which was also slow to occur. In contrast, the resistant cultivar had less colonization and destruction of xylem, extensive areas of hyperplastic xylem parenchyma which sometimes surrounded groups of infected vessels, and rapid and extensive gelation of the xylem vessels in advance of fungal colonization. The rapid gelation response, together with the hyperplasia, were considered to be responsible for the physical containment of the fungus in the resistant cultivar and are therefore an important part of the defence mechanism in this host against the pathogen.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 402
Author(s):  
Haiying Ren ◽  
Yangchun Wu ◽  
Temoor Ahmed ◽  
Xingjiang Qi ◽  
Bin Li

Bayberry is an important fruit tree native to the subtropical regions of China. However, a systematic twig blight disease caused by Pestalotiopsis versicolor and P. microspora, resulted in the death of the whole tree of bayberry. The main variety Dongkui is highly sensitive to the twig blight disease, but the variety Zaojia is very highly resistant to the disease. Therefore, it is very necessary to clear the difference between resistant and susceptible varieties in response to the fungal infection. In this paper, we investigated the response of resistant and susceptible bayberry cultivars to infection of twig blight pathogen by histological observation and gibberellin signaling pathway-related genes expression. Microscopic observation revealed the difference in the infection process between resistant and susceptible varieties. The results of frozen scanning electron microscopy showed that the Pestalotiopsis conidia were shrunk, the mycelium was shriveled and did not extend into the cells of resistant cultivars, while the conidia were full and the top was extended, the mycelia was normal and continued to extend to the cells of a susceptible cultivar. Indeed, the medulla cells were almost intact in resistant cultivar, but obviously damaged in susceptible cultivar after inoculation of the main fungal pathogen P. versicolor conidia, which is earlier germinated on sterile glass slide than that of a hard plastic slide. The quantitative real-time PCR results showed a significant difference between resistant and susceptible cultivars in the expression of gibberellin signaling pathway-related genes in leaves and stems of bayberry, which is closely related to infection time, the type of genes and varieties. Overall, this study provides a clue for our understanding of the resistance mechanism of bayberry against the twig blight disease.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2338
Author(s):  
Jiangjiang Zhang ◽  
Cuiping Zhang ◽  
Siqi Huang ◽  
Li Chang ◽  
Jianjun Li ◽  
...  

For the dissection and identification of the molecular response mechanisms to salt stress in cannabis, an experiment was conducted surveying the diversity of physiological characteristics. RNA-seq profiling was carried out to identify differential expression genes and pathway which respond to salt stress in different cannabis materials. The result of physiological diversity analyses showed that it is more sensitive to proline contents in K94 than in W20; 6 h was needed to reach the maximum in K94, compared to 12 h in W20. For profiling 0–72 h after treatment, a total of 10,149 differentially expressed genes were identified, and 249 genes exhibited significantly diverse expression levels in K94, which were clustered in plant hormone signal transduction and the MAPK signaling pathway. A total of 371 genes showed significant diversity expression variations in W20, which were clustered in the phenylpropanoid biosynthesis and plant hormone signal transduction pathway. The pathway enrichment by genes which were identified in K94 and W20 showed a similar trend to those clustered in plant hormone signal transduction pathways and MAPK signaling. Otherwise, there were 85 genes which identified overlaps between the two materials, indicating that these may be underlying genes related to salt stress in cannabis. The 86.67% agreement of the RNA-seq and qRT-PCR indicated the accuracy and reliability of the RNA-seq technique. Additionally, the result of physiological diversity was consistent with the predicted RNA-seq-based findings. This research may offer new insights into the molecular networks mediating cannabis to respond to salt stress.


Sign in / Sign up

Export Citation Format

Share Document