scholarly journals Exploring Dry-Film FTIR Spectroscopy to Characterize Milk Composition and Subclinical Ketosis throughout a Cow’s Lactation

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2033
Author(s):  
Amira Rachah ◽  
Olav Reksen ◽  
Valeria Tafintseva ◽  
Felicia Judith Marie Stehr ◽  
Elling-Olav Rukke ◽  
...  

The use of technologies for measurements of health parameters of individual cows may ensure early detection of diseases and maximization of individual cow and herd potential. In the present study, dry-film Fourier transform infrared spectroscopy (FTIR) was evaluated for the purpose of detecting and quantifying milk components during cows’ lactation. This was done in order to investigate if these systematic changes can be used to identify cows experiencing subclinical ketosis. The data included 2329 milk samples from 61 Norwegian Red dairy cows collected during the first 100 days in milk (DIM). The resulting FTIR spectra were used for explorative analyses of the milk composition. Principal component analysis (PCA) was used to search for systematic changes in the milk during the lactation. Partial least squares regression (PLSR) was used to predict the fatty acid (FA) composition of all milk samples and the models obtained were used to evaluate systematic changes in the predicted FA composition during the lactation. The results reveal that systematic changes related to both gross milk composition and fatty acid features can be seen throughout lactation. Differences in the predicted FA composition between cows with subclinical ketosis and normal cows, in particular C14:0 and C18:1cis9, showed that dietary energy deficits may be detected by deviations in distinct fatty acid features.

2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 341-348
Author(s):  
V. Librando ◽  
G. Magazzù ◽  
A. Puglisi

The monitoring of water quality today provides a great quantity of data consisting of the values of the parameters measured as a function of time. In the marine environment, and especially in the suspended material, increasing importance is being given to the presence of organic micropollutants, particularly since some are known to be carcinogenic. As the number of measured parameters increases examining the data and their consequent interpretation becomes more difficult. To overcome such difficulties, numerous chemometric techniques have been introduced in environmental chemistry, such as Multivariate Data Analysis (MVDA), Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR). The use of the first technique in this work has been applied to the interpretation of the quality of Augusta bay, by measuring the concentration of numerous organic micropollutants, together with the classical water pollution parameters, in different sites and at different times. The MVDA has highlighted the difference between various sampling sites whose data were initially thought to be similar. Furthermore, it has allowed a choice of more significant parameters for future monitoring and more suitable sampling site locations.


2018 ◽  
Vol 156 (6) ◽  
pp. 848-854
Author(s):  
M. C. Beltrán ◽  
A. Manzur ◽  
M. Rodríguez ◽  
J. R. Díaz ◽  
C. Peris

AbstractTwo experiments were carried out to investigate how milking in mid-line (ML) affects the lipolysis level and milk composition in goat livestock, in comparison with low-line (LL) milking. The first experiment took place, in triplicate, on an experimental farm. For each replicate, a crossover design (62 goats, two treatments, ML and LL, in two periods each lasting 4 days) was used. Milk samples were taken daily at 0 and 24 h after milking. In the first experimental replicate, some enzymatic coagulation cheeses were made, which were assessed by a panel of tasters at 50 and 100 days of maturation. In the second experiment, the lipolysis level and composition of tank milk from 55 commercial dairy goat farms (25 ML and 30 LL) were analysed, in milk samples taken in three different weeks. The results of the first experiment showed that ML milking increased free fatty acid (FFA) concentration in raw goat's milk significantly (0.71 v. 0.40 mmol/l, respectively). However, in the milk samples taken from commercial farms the FFA concentration remained unaffected by the milking pipeline height (0.59 v. 0.58 mmol/l for ML and LL, respectively). No significant differences were found in the milk composition, nor in the sensory characteristics in the cured cheeses, which suggests that factors other than the milkline height are able to influence the level of lipolysis under commercial conditions. Therefore, ML milking should not be discouraged, provided that the correct functioning and management of the milking operation and milk storage on the farm is guaranteed.


2018 ◽  
Vol 55 (7) ◽  
pp. 459-468 ◽  
Author(s):  
Josyf C Mychaleckyj ◽  
Uma Nayak ◽  
E Ross Colgate ◽  
Dadong Zhang ◽  
Tommy Carstensen ◽  
...  

BackgroundBreast milk is the sole nutrition source during exclusive breastfeeding, and polyunsaturated fatty acids (FAs) are critical micronutrients in infant physical and cognitive development. There has been no prior genomewide association study of breast milk, hence our objective was to test for genetic association with breast milk FA composition.MethodsWe measured the fractional composition of 26 individual FAs in breast milk samples from three cohorts totalling 1142 Bangladeshi mothers whose infants were genotyped on the Illumina MEGA chip and replicated on a custom Affymetrix 30K SNP array (n=616). Maternal genotypes were imputed using IMPUTE.ResultsAfter running 33 separate FA fraction phenotypes, we found that SNPs known to be associated with serum FAs in the FADS1/2/3 region were also associated with breast milk FA composition (experiment-wise significance threshold 4.2×10−9). Hypothesis-neutral comparison of the 33 fractions showed that the most significant genetic association at the FADS1/2/3 locus was with fraction of arachidonic acid (AA) at SNP rs174556, with a very large per major allele effect size of 17% higher breast milk AA level. There was no evidence of independent association at FADS1/2/3 with any other FA or SNP after conditioning on AA and rs174556. We also found novel significant experiment-wise SNP associations with: polyunsaturated fatty acid (PUFA) 6/PUFA3 ratio (sorting nexin 29), eicosenoic (intergenic) and capric (component of oligomeric Golgi complex 3) acids; and six additional loci at genomewide significance (<5×10−8).ConclusionsAA is the primary FA in breast milk influenced by genetic variation at the FADS1/2/3 locus, extending the potential phenotypes under genetic selection to include breast milk composition, thereby possibly affecting infant growth or cognition. Breast milk FA composition is influenced by maternal genetics in addition to diet and body composition.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3055 ◽  
Author(s):  
Silvia Sánchez-Hernández ◽  
Adelaida Esteban-Muñoz ◽  
Rafael Giménez-Martínez ◽  
María José Aguilar-Cordero ◽  
Beatriz Miralles-Buraglia ◽  
...  

Breastfeeding is the ideal way to provide infants with the nutrients they need for healthy growth and development. Milk composition changes throughout lactation, and fat is one of the most variable nutrients in human milk. The aim of this study was to determine the main differences between the fatty acid (FA) profile of human milk samples (colostrum, transitional, and mature milk group) and infant formulas. Human milk samples were provided by lactating women from Granada. Moreover, different commercial infant formulas were analyzed. FAs were determined using gas chromatography coupled with mass spectrometry. According to the results, oleic acid was the predominant monounsaturated fatty acid (41.93% in human milk and 43.53% in infant formulas), while palmitic acid was the most representative saturated fatty acid (20.88% in human milk and 23.09% in infant formulas). Significant differences were found between human milk groups and infant formulas, mainly in long-chain polyunsaturated FAs (LC-PUFAs). The content of araquidonic acid (AA) and docoxahexaenoic acid (DHA) was higher in human milk (0.51% and 0.39%, respectively) than in infant formulas (0.31% and 0.22%, respectively). Linoleic acid (LA) percentage (15.31%) in infant formulas was similar to that found in human milk (14.6%). However, α-linolenic acid (ALA) values were also much higher in infant formulas than in human milk (1.64% and 0.42%, respectively).


Author(s):  
Oto Hanuš ◽  
Petr Roubal ◽  
Eva Samková ◽  
Daniel Falta ◽  
Gustav Chládek ◽  
...  

Real time analyses of main milk components are attended in milking parlours today. Breeders can know milk composition regularly. Energy (ketosis) milk quotients such as fat/crude protein (F/CP) and fat/lactose (F/L) could be essential for ketosis prevention and losses which can be linked with it. Aim was to do a reciprocal validation of reliability of milk indicators for subclinical ketosis (SK) identification. There were: dairy cows on 1st and other lactations free of clinical and superior subclinical mastitis; 3 herds of Czech Fleckvieh (CF) breed, 3 herds of Holstein (H) breed and 1 herd with CF and H; 329 individual milk samples from summer and winter season and 1st third of lactation. Average milk yield varied from 5,500 to 10,000 kg per lactation. Thresholds of F/CP and F/L were estimated (P < 0.05) according to SK milk acetone cut–off limit (≥10 mg.l−1). These were: for first lactation 1.27 (CF) and 1.32 (H), for other lactations 1.52 (CF) and 1.42 (H) in F/CP; for first lactation 0.84 (CF) and 0.84 (H), for other lactations 0.87 (CF) and 0.85 (H) in F/L. They were used for cross validation (P < 0.001) in the same order: 1.251, 1.31, 1.31 and 1.383 in F/CP; 0.831, 0.821, 0.989 and 0.852 in F/L. Validated cut–off limits are quite similar to their original values. It confirmes good reliability of original limits. The validated cut–off limits of milk indicators (F/CP and F/L) for SK in early lactation can be used at technological innovation in animal husbandry. Use of both quotients could improve the regular investigation of SK in practice.


Sign in / Sign up

Export Citation Format

Share Document