scholarly journals Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2473
Author(s):  
Meng-Lei Xu ◽  
Yu Gao ◽  
Xiao Wang ◽  
Xiao Xia Han ◽  
Bing Zhao

Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC–MS/MS), a highly sensitive technique, is gradually being preferred to GC–MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3441
Author(s):  
Raffaella Colombo ◽  
Adele Papetti

Mycotoxins are considered one of the most dangerous agricultural and food contaminants. They are toxic and the development of rapid and sensitive analytical methods to detect and quantify them is a very important issue in the context of food safety and animal/human health. The need to detect mycotoxins at trace levels and to simultaneously analyze many different mycotoxin types became mandatory to protect public health. In fact, European Commission regulations specified both their limits in foodstuffs and official sample preparation protocols in addition to analytical methods to verify their presence. Capillary Electrophoresis (CE) includes different separation modes, allowing many versatile applications in food analysis and safety. In the context of mycotoxins, recent advances to improve CE sensitivity, particularly pre-concentration techniques or miniaturized systems, deserve remarkable attention, as they provide an interesting approach in the analysis of such contaminants in complex food matrices. This review summarizes the applications of CE combined with different pre-concentration approaches, which have been proposed in the literature (mainly) in the last ten years. A section is also dedicated to recent microchip–CE devices since they represent the most promising CE mode for this application.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3857
Author(s):  
Matei Raicopol ◽  
Luisa Pilan

Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.


Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
M Wilcox ◽  
M Jacyno ◽  
J Marcu ◽  
J Neal-Kababick

Author(s):  
Tan-Chen Lee ◽  
Jui-Yen Huang ◽  
Li-Chien Chen ◽  
Ruey-Lian Hwang ◽  
David Su

Abstract Device shrinkage has resulted in thinner barriers and smaller vias. Transmission Electron Microscopy (TEM) has become a common technique for barrier profile analysis because of its high image resolution. TEM sample preparation and image interpretation becomes difficult when the size of the small cylindrical via is close to the TEM sample thickness. Effects of different sample thickness and specimen preparation methods, therefore, have been investigated. An automatic FIB program has been shown to be useful in via sample preparation. Techniques for imaging a TEM specimen will be discussed in the paper. Conventional TEM bright field (BF) image is adequate to examine the barrieronly via; however, other techniques are more suitable for a Cu filled via.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Author(s):  
T. Schaffus ◽  
H. Pfaff ◽  
P. Albert ◽  
M. Schaffus ◽  
F. Kroninger ◽  
...  

Abstract The given project is to benchmark typical preparation methods under the aspect of the influence of initial intrinsic stresses inside electric components. Raman spectroscopy has been applied as well as the piezo resistive readout on a specifically designed model stress monitoring chip.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2449
Author(s):  
Lauren Girard ◽  
Kithsiri Herath ◽  
Hernando Escobar ◽  
Renate Reimschuessel ◽  
Olgica Ceric ◽  
...  

The U.S. Food and Drug Administration’s (FDA′s) Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats since 2007. Renal failure accounted for 30% of reported cases. Jerky pet treats contain glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are food contaminants that can form in glycerin during the refining process. 3-MCPDEs and GEs pose food safety concerns, as they can release free 3-MCPD and glycidol in vivo. Evidence from studies in animals shows that 3-MCPDEs are potential toxins with kidneys as their main target. As renal failure accounted for 30% of reported pet illnesses after the consumption of jerky pet treats containing glycerin, there is a need to develop a screening method to detect 3-MCPDEs and GEs in glycerin. We describe the development of an ultra-high-pressure liquid chromatography/quadrupole time-of-flight (UHPLC/Q-TOF) method for screening glycerin for MCPDEs and GEs. Glycerin was extracted and directly analyzed without a solid-phase extraction procedure. An exact mass database, developed in-house, of MCPDEs and GEs formed with common fatty acids was used in the screening.


Sign in / Sign up

Export Citation Format

Share Document