scholarly journals Modeling of Osmotic Dehydration of Apples in Sugar Alcohols and Dihydroxyacetone (DHA) Solutions

Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 20 ◽  
Author(s):  
Joanna Cichowska ◽  
Adam Figiel ◽  
Lidia Stasiak-Różańska ◽  
Dorota Witrowa-Rajchert

The purpose of this paper is twofold: on the one hand, we verify effectiveness of alternatives solutes to sucrose solution as osmotic agents, while on the other hand we intend to analyze modeling transfer parameters, using different models. There has also been proposed a new mass transfer parameter—true water loss, which includes actual solid gain during the process. Additional consideration of a new ratio (Cichowska et al. Ratio) can be useful for better interpretation of osmotic dehydration (OD) in terms of practical applications. Apples v. Elise were dipped into 30% concentrated solutions of erythritol, xylitol, maltitol, and dihydroxyacetone (DHA) to remove some water from the tissue. To evaluate the efficiency of these solutes, 50% concentrated sucrose solution was used as a control. All of the tested osmotic agent, except maltitol, were effective in the process as evidenced by high values in the true water loss parameter. Solutions of erythritol and xylitol in 30% concentrate could be an alternative to sucrose in the process of osmotic dehydration. Peleg’s, Kelvin–Voigt, and Burgers models could fit well with the experimental data. modeling of mass transfer parameters, using Peleg’s model can be satisfactorily supplemented by Kelvin–Voigt and Burgers model for better prediction of OD within the particular periods of the process.

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2286
Author(s):  
Mohamed Ghellam ◽  
Oscar Zannou ◽  
Charis M. Galanakis ◽  
Turki M. S. Aldawoud ◽  
Salam A. Ibrahim ◽  
...  

Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10−10 to 1.55 × 10−10 m2·s−1 for water loss and from 0.72 × 10−10 to 0.62 × 10−10 m2·s−1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.


2021 ◽  
Vol 12 (1S) ◽  
pp. 74-82
Author(s):  
Izyan Nazihah Mohd Fadil ◽  
Wan Mohd Fadli Wan Mokhtar ◽  
Wan Anwar Fahmi Wan Mohamad ◽  
Ishamri Ismail

Previous study has explored dip dehydration as a novel variant of osmotic dehydration to reduce solid gain, which is the main problem of osmotic dehydration. However, this dehydration process commonly uses sucrose solution as osmotic agent which might contribute to the increase in glycaemic index and can also be linked to different diseases such as diabetes and obesity. Therefore, this study aims to investigate the effect of using alternative sweeteners as an osmotic agent on mass transfer, colour, and texture profiles during dip dehydration of apple slices. Three alternative sweeteners, i.e., erythritol, sorbitol and xylitol with 30% (w/v) concentration were used in this study. Apple slices with 1.5 mm thickness and diameter of 55 mm were dipped multiple time in the same concentrated solution every 40 minutes until 200 minutes before samples were analysed. Findings showed that different type of sweetener affect water loss and solid gain. Xylitol and sorbitol gave highest water loss about 36% and 40%, respectively. Lowest total colour different with fresh apple has been observed in sample treated with xylitol. As for texture, there is no remarkable effect of using alternative sweetener as osmotic agent at all processing times. Overall, the best alternative sweetener for sucrose is xylitol considering the mass transfer and quality of apple slices.


2012 ◽  
Vol 554-556 ◽  
pp. 1332-1336 ◽  
Author(s):  
Zhen Hua Duan ◽  
Ju Lan Wang ◽  
Yan Yan Wu ◽  
Jian Peng ◽  
Yi Yang ◽  
...  

To investigate behavior of osmotic dehydration and mass transfer of tilapia fillet in sucrose solution, the changes of moisture content (MC), solid gain (SG) were quantitatively determined during osmotic treatments of fresh tilapia fillets with the sucrose solution concentration (20-40%), temperature (20-30°C), fillet thickness (1-5mm) and osmotic time (1-8h) as the independent treatment factors. Results were as follows: First, MC of fish fillet decreased, and SG of fish fillet increased with increasing of the concentration of sucrose solution. Second, the osmotic dehydration of fish fillet was fast during the first hour and slowed during the 2nd or 4th hour. Third, the dehydration and SG of fish fillet increased with increasing of treatment temperature, but influence of temperature on osmotic dehydration and SG was decreasing with increasing of the concentration of sucrose solution. Finally, a thinner fillet was found to own higher of dehydration and SG than a thicker one.


1997 ◽  
Vol 3 (6) ◽  
pp. 459-465 ◽  
Author(s):  
I.C. Trelea ◽  
A.L. Raoult-Wack ◽  
G. Trystram

The aim of this work was to elaborate a predictive model of the mass transfer (water loss and solute gain) that occurs during dewatering and soaking by using neural network modelling. Two separate feedforward networks with one hidden layer were used (for water loss and solute gain respectively). Model validation was carried out on results obtained previously, which dealt with agar gel soaked in sucrose solution over a wide experimental range (temperature, 30-70 °C; solu tion concentration, 30-70 g sucrose/100 g solution; time 0-500 min; agar concentration, 2-8%). The best results were obtained with three hidden neurons, which made it possible to predict mass transfer, with an accuracy at least as good as the experimental error, over the whole experimental range. The technological interest of such a model is related to a rapidity in simulation compa rable to that of a traditional transfer function, a limited number of parameters and experimental data, and the fact that no preliminary assumption on the underlying mechanisms was needed.


Author(s):  
G.S. Aparna ◽  
P.R. Geetha Lekshmi ◽  
C. Mini

Background: Bilimbi is a profusely bearing tree and majority of fruits produced are wasted due to lack of proper preservation methods. Osmo-dehydration studies on quality attributes of bilimbi (Averroha bilimbi) was conducted with the objective to standardize the process variables for osmodehydrated bilimbi and to assess the retention of bioactive compounds. Methods: Harvested mature bilimbi fruits of uniform size were washed, surface dried, pricked and blanched in hot water for one minute. Blanched fruits were subjected to osmotic treatment, with sucrose solution of 40, 60 and 80°B for 60, 120 and 180 minutes. The osmodehydrated bilimbi fruits were analyzed for mass transfer, biochemical and sensory qualities. Best treatments were stored for four months in the room temperature. Result: Mass transfer characters viz., solid gain, water loss, percentage weight reduction, yield and biochemical parameters such as reducing sugar and total sugar increased with increase in osmotic concentration and immersion time whereas free acids, ascorbic acid and antioxidant activity were decreased. The osmotic treatment of 80°B for 180 minutes recorded the highest value for solid gain (5.10%), water loss (16.72%), weight reduction (22.57%), ratio of water loss to solid gain (3.25%) and yield (21.13%) which exhibited superior sensory scores for taste (8.43), flavor (8.27), texture (8.46) and overall acceptability (8.43). The best three treatments selected based on sensory analysis were subjected to storage stability studies under room temperature. Osmodehydrated bilimbi obtained highest sensory score at the end of storage.


2014 ◽  
Vol 20 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Vladimir Filipovic ◽  
Ljubinko Levic ◽  
Biljana Curcic ◽  
Milica Nicetin ◽  
Lato Pezo ◽  
...  

This paper presents the effects of different process temperature (20, 35 and 50 ?C), immersion time (1, 3 and 5 hours) and the concentration of sugar beet molasses + NaCl + sucrose water solution on osmotic dehydration of pork meat (M. triceps brachii) cubes, shaped 1 x 1 x 1 cm, at atmospheric pressure. The main objective was to examine the influence of different parameters on the mass transfer kinetics during osmotic treatment. The observed system?s responses were: water loss, solid gain, and water activity. The optimum osmotic conditions (temperature of 40 ?C, treatment time of 4.1 h and concentration 67 %), were determined using response surface method, by superimposing the contour plots of each process variable, and the responses were: water loss=0.46, solid gain=0.15, and water activity=0.79. Transport coefficients, for both solids and water transfer and energy of activation for all samples were also determined.


2013 ◽  
Vol 9 (4) ◽  
pp. 403-412 ◽  
Author(s):  
Laura A. Ramallo ◽  
Miriam D. Hubinger ◽  
Rodolfo H. Mascheroni

AbstractThe influence of operating pressure during osmotic dehydration on mass transfer and mechanical properties in pineapple fruits was analyzed. Dehydration trials were performed at atmospheric pressure (OD) and by applying a vacuum pulse (VPOD), in sucrose solution at 60°Brix and 40°C for 300 min. Seven operation conditions were implemented with a vacuum pulse of 100 mbar or 250 mbar for 0, 5, 15 or 25 min at the beginning of the process. The decrease of pressure favored the solute uptake, but the water loss has not been significantly affected. No significant effect of vacuum time was observed. However, solute uptake in trials with vacuum pulse of 100 mbar was significantly higher than in OD process. In general, mechanical properties and shrinkage were not affected by operation conditions. Osmotic dehydration process (both OD and VPOD) originates a more resistant tissue structure than the one in fresh pineapple fruit.


2012 ◽  
Vol 26 (3) ◽  
pp. 235-242 ◽  
Author(s):  
K. Athmaselvi ◽  
K. Alagusundaram ◽  
C. Kavitha ◽  
T. Arumuganathan

Impact of pretreatment on colour and texture of watermelon rind The effect of osmotic dehydration pretreatment on water loss, solid gain, colour and textural change was investigated. Watermelon rind 1 x 1 cm size was immersed in sucrose solution of 40, 50 and 60° Brix after pretreatment with microwave and conventional boiling in water for 1, 3, and 5 min, respectively. Water loss and solid gain increased with the time of cooking and sugar concentration. Microwave pretreated samples showed higher water loss and solid gain. Increase in the time of cooking decreased the brightness of all the samples. Microwave pretreated samples showed higher ‘b’ values than conventionally pretreated ones. There was no significant difference (P≤0.05) in texture profile analysis parameters except for hardness. Hardness decreased with increase in time of cooking and sugar concentration. Second order regression model was developed for water loss and solid gain of microwave and conventional pretreated watermelon rind.


Author(s):  
N. A. Gribova ◽  
L. V. Berketova

Osmotic dehydration, due to its advantages related to energy and quality, is gaining popularity as an additional stage of processing in the chain of complex processing of products. As a rule, osmotic dehydration is a slow process, so there is a need for additional methods to increase mass transfer without adversely affecting the quality of the product. This has provided the necessary motivation for many recent achievements in the field. Minimal processing methods, such as osmodehydration, find a significant place in the processing industry to increase the shelf life of fruit and berry raw materials. The overall efficiency of the process is determined by the process parameters affecting the phenomenon of mass transfer. Therefore, in this work the parameters of mass transfer in osmotic dehydration of berry raw materials: strawberry, raspberry, blackcurrant, BlackBerry are studied. The process of mass transfer has been modeled effectively, as evidenced by the results obtained. Berries, previously dehydrated at 70°Brix solution of sucrose, have the cryoscopy temperature lower (-1.7°C)–(-4.8°C), dehydrated at 60°Brix solution of sucrose from (-1.1°C) to (-2,6°C).The number of crystallized water in berries, dehydrated in 60°Brix solution of sucrose made up from 8.6–10.1 %, and in 70°Brix solution from a 13.9–12.9 %.The amount of frozen water in berries, dehydrated 70 ° Brix sucrose solution from 7.5–40.4%, dehydrated 60°Brix sucrose solution from 2.3–10.1%. Reducing the activity of water in berries treated with 70°Brix solution was 2.8–0.8 %, 60°Brix sucrose solution from 1.4–0.3%. The obtained data show that due to osmotic dehydration of berries with a solution of sucrose, followed by freezing, the activity of water decreases, which allows extending the shelf life and limits the access of microorganisms to growth in the environment.


2014 ◽  
Vol 10 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Ali Ganjloo ◽  
Russly A. Rahman ◽  
Jamilah Bakar ◽  
Azizah Osman ◽  
Mandana Bimakr

Abstract In this study, osmotic dehydration of seedless guava was studied through response surface methodology. Seedless guava cubes were dehydrated in sucrose solution at different concentration (30–50% w/w), temperature (30–50°C) and immersion time (15–240 min) with respect to weight reduction, solid gain and water loss. A Box–Behnken design was used to determine the optimum processing conditions that yield maximum weight reduction, water loss and minimum solid gain. The models developed for all responses were significant (p<0.05). The response surface plots were constructed to show the interaction of process variables. Optimum process conditions were found to be sucrose concentration of 33.79% w/w, temperature of 30.00°C and immersion time of 240 min through desirability function method. At these optimum points, weight reduction, solid gain and water loss were found to be 0.189 (gg−1), 0.050 (gg−1) and 0.237 (gg−1), respectively.


Sign in / Sign up

Export Citation Format

Share Document