scholarly journals Ultrasonic Pretreatment in Synthesis of Caprylic-Rich Structured Lipids by Lipase-Catalyzed Acidolysis of Corn Oil in Organic System and Its Physicochemical Properties

Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 566 ◽  
Author(s):  
Chonghui Yue ◽  
Hongyan Ben ◽  
Junwen Wang ◽  
Tiantian Li ◽  
Guoping Yu

The current work was to evaluate the lipase-catalyzed acidolysis of corn oil with caprylic acid (CA) in organic system under bath ultrasonic pretreatment and to analyze the physicochemical properties of structured lipids (SLs). Under optimum conditions (Novozym 40086 lipase, 200 W ultrasound power, 10 min ultrasound pretreatment time, 12% dosage of lipase, Triacylglycerol (TAG)/Free fatty acids (FFA): 1/8, 40 °C for 6 h), a 45.55% CA incorporation was obtained (named SLs-U). The highest CA incorporation was 32.75% for conventional method at reaction time of 10 h (named SLs-N). The predominant TAG types of SLs were MLM (medium-, long- and medium-chain-type TAGs) and MLL (medium-, long- and long-chain-type TAGs). X-ray diffraction analysis revealed that both SLs-U and SLs-N present β form. Differential scanning calorimetry (DSC) analysis showed that both SLs-U and SLs-N show a lower melting and crystallization temperature than corn oil. This study suggested that bath ultrasonic pretreatment can accelerate lipase-catalyzed acidolysis synthesis of MLM structured lipids in an organic system, and two kinds of structured lipids show similar physicochemical properties.

Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1088
Author(s):  
Cristóbal Verdugo-Escamilla ◽  
Carolina Alarcón-Payer ◽  
Antonio Frontera ◽  
Francisco Javier Acebedo-Martínez ◽  
Alicia Domínguez-Martín ◽  
...  

The design of new multicomponent pharmaceutical materials that involve different active pharmaceutical ingredients (APIs), e.g., drug-drug cocrystals, is a novel and interesting approach to address new therapeutic challenges. In this work, the hydrochlorothiazide-caffeine (HCT–CAF) codrug and its methanol solvate have been synthesized by mechanochemical methods and thoroughly characterized in the solid state by powder and single crystal X-ray diffraction, respectively, as well as differential scanning calorimetry, thermogravimetric analyses and infrared spectroscopy. In addition, solubility and stability studies have also been performed looking for improved physicochemical properties of the codrug. Interestingly, the two reported structures show great similarity, which allows conversion between them. The desolvated HCT–CAF cocrystal shows great stability at 24 h and an enhancement of solubility with respect to the reference HCT API. Furthermore, the contribution of intermolecular forces on the improved physicochemical properties was evaluated by computational methods showing strong and diverse H-bond and π–π stacking interactions.


1989 ◽  
Vol 33 ◽  
pp. 445-452 ◽  
Author(s):  
Dhanesh Chandra ◽  
Renee A. Lynch ◽  
Wei Ding ◽  
John J. Tomlinson

AbstractPentaerythritol (PE) and neopentylglycol (NPG) are organic molecular crystals which have hydrogen-bonded lattices with layered- and chain-type structures, respectively. The PE undergoes solid-state phase transitions at 416K, from tetragonal to a cubic (γ’) structure and NPG also undergoes this transition at 317K from a monoclinic to a cubic (γ) structure. The phase transitions in binary PE-NPG solid solutions show more than one solid-solid transition in which the NPG-rich β transforms to γ at a constant temperature but the transition of the PE-rich a phase to γ’ passes through a two-phase field at a temperature that varies as a function of composition. Structural analyses by high-temperature x-ray diffractometry have revealed some new, interesting transitions. A phase diagram has been constructed for 0-30 mol% NPG in the PE-NPG system, using x-ray diffraction and differential scanning calorimetry results, and work is in progress to complete this diagram. The variation of lattice parameters as a function of temperature in the α, γ and γ’ phases for PE+20 mol% NPG are presented here, together with a discussion of phase transitions for certain compositions.


2011 ◽  
Vol 366 ◽  
pp. 421-424 ◽  
Author(s):  
Jiang Nan Zeng ◽  
Bo Quan Jiang ◽  
Zheng Qiang Xiao ◽  
Shu Huan Li

The extraction of collagen from fish scales with papain under ultrasonic pretreatment was conducted in this paper. The effects of the ultrasonic pretreatment time, the ratio of papain to fish scales, the extraction temperature and the extraction time on the extraction rate of collagen were investigated by single factor experiment and orthogonal experiment, respectively. The results showed that the optimum conditions for collagen extraction from fish scales were: ultrasonic pretreatment time 4min, ratio of papain to fish scales 4%, temperature 60°C and extraction time 5h. Under the optimum conditions the extraction rate of collagen reached 90.7%.


e-Polymers ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Amin Moslemi ◽  
Rouhallah Bagheri ◽  
Negar Karami ◽  
Ehsan Mokhtari

AbstractAqueous slurry free radical terpolymerization of acrylonitrile (AN) with vinyl acetate (VAc) and a constant amount of 2-acrylamido-2-methylpropane sulfunic acid (AMPS) using K2S2O8/NaHSO3 redox initiator was carried out in a 15-l continuous stirred tank reactor at constant temperature (60°C) and atmospheric pressure. A three-level response surface method based on central composite design was applied to investigate the effect of VAc concentration (wt%) in monomer mixture, bisulfite- to-persulfate ratio in redox initiator system $\left( {\frac{{{\text{[HSO}}_3^ - ]}}{{[{{\text{S}}_2}{\text{O}}_8^{ - 2}]}}} \right)$ and bisulfite-to-monomer mixture ratio $\left( {\frac{{[{\text{HSO}}_3^ - ]}}{{{\text{AN}} + {\text{VAc}}}}} \right)$ on the monomer conversion percentage to polymer, intrinsic viscosity [(η)] and sulfur end groups (SEG) index of the prepared polymers. Experimental results showed that the optimum conditions for synthesis of AN-VAc-AMPS system can be addressed as VAc=9 wt%, $\left( {\frac{{[{\text{HSO}}_3^ - ]}}{{[{{\text{S}}_2}{\text{O}}_8^{ - 2}]}}} \right) = 9.6$ and $\left( {\frac{{[{\text{HSO}}_3^ - ]}}{{{\text{AN}} + {\text{VAc}}}}} \right) = 0.027.$ Monomer conversion percentage to polymer, intrinsic viscosity and SEG index under optimum conditions were 75%, 1.38 dl/g and 190, respectively. The synthesized polymer under these optimum conditions can satisfy the requirements for acrylic fiber production in which its characterization was confirmed with Fourier transform infrared spectroscopy, nuclear magnetic resonance, elemental analysis, X-ray diffraction, differential scanning calorimetry and scanning electron microscope.


2021 ◽  
Vol 11 (1-s) ◽  
pp. 43-48
Author(s):  
Ashwini Gawade ◽  
Ashwin Kuchekar ◽  
Sanjay Boldhane ◽  
Akshay Baheti

The aim of this study was to develop a pH-independent release formulation of dipyridamole (DP) by the combined use of pH-modifier technology and cocrystal technology tartaric acid (TA) was selected as an appropriate pH-modifier in terms of improving physicochemical properties and dissolution behavior of DP under neutral conditions. Molecular docking method was used to identify the suitable conformer.  Upon optimization of the ratio of TA to DP (molar ratio of 1:1, 1:2 and 1:3) was prepared by a solvent assisted griding method. Scanning electron microscopy images revealed that formation of DP-TA co crystals supported by supported by powder X-ray diffraction and differential scanning calorimetry analyses. Spectroscopic analysis suggested that there might be inter-molecular interaction among DP and TA resulting in pH independent dissolution behavior of drug substance. The study confirmed the selection of proper coformer and exhibited enhanced physicochemical, solubility and stability of the Dipyridamole cocrystals. Hence, based upon results it revealed that cocrystallization helps in improving the physicochemical properties of the API. Keywords: Dipyridamole, Coformer, Molecular docking, Radar chart, solvent assisted griding, Cocrystals


2020 ◽  
pp. 096739112095953 ◽  
Author(s):  
Amin Abbasi ◽  
Mohamed Mahmoud Nasef ◽  
Wan Zaireen Nisa Yahya ◽  
Muhammad Moniruzzaman ◽  
Ali Shaan Ghumman

Vegetable oils are a promising class of bioresources for producing green polymeric materials to reduce the dependence on petro-based polymers. In this study, a green copolymer prepared by thermal copolymerization corn oil with sulphur at its molten state is reported for the first time. The proportions of sulphur to corn oil (w/w%) in the reaction mixture were varied in the range of 50/50 to 80/20 and the reactions were carried out at 170°C for 1 h. The obtained copolymers were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). The percentage of the unsaturated fatty acid portion was found to act as a multifunctional monomer stabilizing polysulphide forming crosslinked structures that vary depending on reactant sulphur content. The obtained copolymers were found to be amorphous thermosets with heavily crosslinked structures and composite morphologies. The copolymers also showed high thermal stability under nitrogen atmosphere. The new copolymers are environmentally friendly hybrid material promoting green chemistry with a potential added value to abundantly available sulphur and corn oil.


2020 ◽  
Vol 11 (6) ◽  
pp. 5142-5155 ◽  
Author(s):  
Chonghui Yue ◽  
Ming Li ◽  
Jing Li ◽  
Xu Han ◽  
Hongwei Zhu ◽  
...  

MLM structured lipids synthesized from corn oil and caprylic slow down atherosclerosis induced by high fat diet via regulating inflammation, adipogenesis and gut microbiota.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Sign in / Sign up

Export Citation Format

Share Document