scholarly journals A Nanoengineered Stainless Steel Surface to Combat Bacterial Attachment and Biofilm Formation

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1518
Author(s):  
Ga-Hee Ban ◽  
Yong Li ◽  
Marisa M. Wall ◽  
Soojin Jun

Nanopatterning and anti-biofilm characterization of self-cleanable surfaces on stainless steel substrates were demonstrated in the current study. Electrochemical etching in diluted aqua regia solution consisting of 3.6% hydrogen chloride and 1.2% nitric acid was conducted at 10 V for 5, 10, and 15 min to fabricate nanoporous structures on the stainless steel. Variations in the etching rates and surface morphologic characteristics were caused by differences in treatment durations; the specimens treated at 10 V for 10 min showed that the nanoscale pores are needed to enhance the self-cleanability. Under static and realistic flow environments, the populations of Escherichia coli O157:H7 and Salmonella Typhimurium on the developed features were significantly reduced by 2.1–3.0 log colony-forming unit (CFU)/cm2 as compared to bare stainless steel (p < 0.05). The successful fabrication of electrochemically etched stainless steel surfaces with Teflon coating could be useful in the food industry and biomedical fields to hinder biofilm formation in order to improve food safety.

2020 ◽  
Vol 63 (5) ◽  
pp. 1401-1407
Author(s):  
Bog Eum Lee ◽  
Youngsang You ◽  
Won Choi ◽  
Eun-mi Hong ◽  
Marisa M. Wall ◽  
...  

HighlightsNanoporous superhydrophobic surfaces were fabricated using electrochemical etching and Teflon coating.Adhesion of Listeria monocytogenes to the nanoengineered stainless steel surfaces was reduced.Self-cleanable food-contact surfaces prevent bacterial attachment and subsequent biofilm formation.Abstract. Bacterial attachment on solid surfaces and subsequent biofilm formation is a significant problem in the food industry. Superhydrophobic surfaces have potential to prevent bacterial adhesion by minimizing the contact area between bacterial cells and the surface. In this study, stainless steel-based superhydrophobic surfaces were fabricated by manipulating nanostructures with electrochemical etching and polytetrafluoroethylene (PTFE) film. The formation of nanostructures on stainless steel surfaces was characterized by field emission scanning electron microscopy (FESEM). The stainless steel surfaces etched at 10 V for 5 min and at 10 V for 10 min with PTFE deposition resulted in average water contact angles of 154° ±4° with pore diameters of 50 nm. In addition, adhesion of Listeria monocytogenes was decreased by up to 99% compared to the bare substrate. These findings demonstrate the potential for the development of antibacterial surfaces by combining nanoporous patterns with PTFE films. Keywords: Electrochemical etching, PTFE, Nanoengineered surface, L. monocytogenes, Superhydrophobic.


2018 ◽  
Vol 38 (3) ◽  
pp. e12456 ◽  
Author(s):  
Nor Ainy Mahyudin ◽  
Noor Ifatul Hanim Mat Daud ◽  
Nor-Khaizura Mahmud Ab Rashid ◽  
Belal J. Muhialdin ◽  
Nazamid Saari ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Pilar Sabuquillo ◽  
Jaime Cubero

Xanthomonasarboricola pv. pruni (Xap) causes bacterial spot of stone fruit and almond, an important plant disease with a high economic impact. Biofilm formation is one of the mechanisms that microbial communities use to adapt to environmental changes and to survive and colonize plants. Herein, biofilm formation by Xap was analyzed on abiotic and biotic surfaces using different microscopy techniques which allowed characterization of the different biofilm stages compared to the planktonic condition. All Xap strains assayed were able to form real biofilms creating organized structures comprised by viable cells. Xap in biofilms differentiated from free-living bacteria forming complex matrix-encased multicellular structures which become surrounded by a network of extracellular polymeric substances (EPS). Moreover, nutrient content of the environment and bacterial growth have been shown as key factors for biofilm formation and its development. Besides, this is the first work where different cell structures involved in bacterial attachment and aggregation have been identified during Xap biofilm progression. Our findings provide insights regarding different aspects of the biofilm formation of Xap which improve our understanding of the bacterial infection process occurred in Prunus spp and that may help in future disease control approaches.


2012 ◽  
Vol 32 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Danila Soares Caixeta ◽  
Thiago Henrique Scarpa ◽  
Danilo Florisvaldo Brugnera ◽  
Dieyckson Osvani Freire ◽  
Eduardo Alves ◽  
...  

The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1) when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.


2008 ◽  
Vol 11 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Rosa Maria Rabelo Junqueira ◽  
Célia Regina de Oliveira Loureiro ◽  
Margareth Spangler Andrade ◽  
Vicente Tadeu Lopes Buono

2005 ◽  
Vol 68 (12) ◽  
pp. 2614-2622 ◽  
Author(s):  
JEE-HOON RYU ◽  
LARRY R. BEUCHAT

Biofilm formation by Bacillus cereus 038-2 on stainless steel coupons, sporulation in the biofilm as affected by nutrient availability, temperature, and relative humidity, and the resistance of vegetative cells and spores in biofilm to sanitizers were investigated. Total counts in biofilm formed on coupons immersed in tryptic soy broth (TSB) at 12 and 22°C consisted of 99.94% of vegetative cells and 0.06% of spores. Coupons on which biofilm had formed were immersed in TSB or exposed to air with 100, 97, 93, or 85% relative humidity. Biofilm on coupons immersed in TSB at 12°C for an additional 6 days or 22°C for an additional 4 days contained 0.30 and 0.02% of spores, respectively, whereas biofilm exposed to air with 100 or 97% relative humidity at 22°C for 4 days contained 10 and 2.5% of spores, respectively. Sporulation did not occur in biofilm exposed to 93 or 85% relative humidity at 22°C. Treatment of biofilm on coupons that had been immersed in TSB at 22°C with chlorine (50 μg/ml), chlorine dioxide (50 μg/ml), and a peroxyacetic acid–based sanitizer (Tsunami 200, 40 μg/ml) for 5 min reduced total cell counts (vegetative cells plus spores) by 4.7, 3.0, and 3.8 log CFU per coupon, respectively; total cell counts in biofilm exposed to air with 100% relative humidity were reduced by 1.5, 2.4, and 1.1 log CFU per coupon, respectively, reflecting the presence of lower numbers of vegetative cells. Spores that survived treatment with chlorine dioxide had reduced resistance to heat. It is concluded that exposure of biofilm formed by B. cereus exposed to air at high relative humidity (≥97%) promotes the production of spores. Spores and, to a lesser extent, vegetative cells embedded in biofilm are protected against inactivation by sanitizers. Results provide new insights to developing strategies to achieve more effective sanitation programs to minimize risks associated with B. cereus in biofilm formed on food contact surfaces and on foods.


Sign in / Sign up

Export Citation Format

Share Document