scholarly journals On Adaptive Heuristics that Converge to Correlated Equilibrium

Games ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Ayan Bhattacharya

I study the path properties of adaptive heuristics that mimic the natural dynamics of play in a game and converge to the set of correlated equilibria. Despite their apparent differences, I show that these heuristics have an abstract representation as a sequence of probability distributions that satisfy a number of common properties. These properties arise due to the topological structure of the set of correlated equilibria. The characterizations that I obtain have useful applications in the study of the convergence of the heuristics.

2014 ◽  
Vol 14 (5&6) ◽  
pp. 493-516
Author(s):  
Alan Deckelbaum

We ask whether players of a classical game can partition a pure quantum state to implement classical correlated equilibrium distributions. The main contribution of this work is an impossibility result: we provide an example of a classical correlated equilibrium that cannot be securely implemented without useful information leaking outside the system. We study the model where players of a classical complete information game initially share an entangled pure quantum state. Players may perform arbitrary local operations on their subsystems, but no direct communication (either quantum or classical) is allowed. We explain why, for the purpose of implementing classical correlated equilibria, it is desirable to restrict the initial state to be pure and to restrict communication. In this framework, we define the concept of pure quantum correlated equilibrium (PQCE) and show that in a normal form game, any outcome distribution implementable by a PQCE can also be implemented by a classical correlated equilibrium (CE), but that the converse is false. We extend our analysis to extensive form games, and compare the power of PQCE to extensive form classical correlated equilibria (EFCE) and immediate-revelation extensive form correlated equilibria (IR-EFCE).


Author(s):  
Herbert Gintis

This chapter summarizes the book's main points, covering game theory, the commonality of beliefs, the limits of rationality, social norms as correlated equilibria, and how reason is bounded by sociality, not irrationality. Among the conclusions are that game theory is an indispensable tool in modeling human behavior. Behavioral disciplines that reject or peripheralize game theory are theoretically handicapped. The Nash equilibrium is not the appropriate equilibrium concept for social theory. The correlated equilibrium is the appropriate equilibrium concept for a set of rational individuals having common priors. Social norms are correlated equilibria. The behavioral disciplines today have four incompatible models of human behavior. The behavioral sciences must develop a unified model of choice that eliminates these incompatibilities and that can be specialized in different ways to meet the heterogeneous needs of the various disciplines.


2020 ◽  
Vol 10 (24) ◽  
pp. 9003
Author(s):  
Piotr Frąckiewicz

Players’ choices in quantum game schemes are often correlated by a quantum state. This enables players to obtain payoffs that may not be achievable when classical pure or mixed strategies are used. On the other hand, players’ choices can be correlated due to a classical probability distribution, and if no player benefits by a unilateral deviation from the vector of recommended strategies, the probability distribution is a correlated equilibrium. The aim of this paper is to investigate relation between correlated equilibria and Nash equilibria in the MW-type schemes for quantum games.


2011 ◽  
Vol 13 (04) ◽  
pp. 363-381 ◽  
Author(s):  
GIUSEPPE DE MARCO ◽  
JACQUELINE MORGAN

This paper studies new refinement concepts for correlated equilibria based on altruistic behavior of the players and generalizes some refinement concepts previously developed by the authors for Nash equilibria. Effectiveness of the concepts, relations with the corresponding notions for Nash equilibria and with other correlated equilibrium refinements are investigated. The analysis of the topological properties of the set of solutions concludes the paper.


2020 ◽  
Vol 34 (02) ◽  
pp. 1934-1941
Author(s):  
Gabriele Farina ◽  
Tommaso Bianchi ◽  
Tuomas Sandholm

Coarse correlation models strategic interactions of rational agents complemented by a correlation device which is a mediator that can recommend behavior but not enforce it. Despite being a classical concept in the theory of normal-form games since 1978, not much is known about the merits of coarse correlation in extensive-form settings. In this paper, we consider two instantiations of the idea of coarse correlation in extensive-form games: normal-form coarse-correlated equilibrium (NFCCE), already defined in the literature, and extensive-form coarse-correlated equilibrium (EFCCE), a new solution concept that we introduce. We show that EFCCEs are a subset of NFCCEs and a superset of the related extensive-form correlated equilibria. We also show that, in n-player extensive-form games, social-welfare-maximizing EFCCEs and NFCCEs are bilinear saddle points, and give new efficient algorithms for the special case of two-player games with no chance moves. Experimentally, our proposed algorithm for NFCCE is two to four orders of magnitude faster than the prior state of the art.


Author(s):  
Andrea Celli ◽  
Alberto Marchesi ◽  
Gabriele Farina ◽  
Nicola Gatti

The existence of uncoupled no-regret learning dynamics converging to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form games generalize normal-form games by modeling both sequential and simultaneous moves, as well as imperfect information. Because of the sequential nature and the presence of private information, correlation in extensive-form games possesses significantly different properties than in normal-form games. The extensive-form correlated equilibrium (EFCE) is the natural extensive-form counterpart to the classical notion of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly more complex, as the correlation device ({\em a.k.a.} mediator) must take into account the evolution of beliefs of each player as they make observations throughout the game. Due to this additional complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research question for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics which provably converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play after T game repetitions is guaranteed to be a O(T^-1/2)-approximate EFCE with high probability, and an EFCE almost surely in the limit.


2005 ◽  
Vol 03 (01) ◽  
pp. 183-188 ◽  
Author(s):  
PIERFRANCESCO LA MURA

Correlated equilibria are sometimes more efficient than the Nash equilibria of a game without signals. We investigate whether the availability of quantum signals in the context of a classical strategic game may allow the players to achieve even greater efficiency than in any correlated equilibrium with classical signals, and find the answer to be positive.


2018 ◽  
Vol 15 (140) ◽  
pp. 20170835 ◽  
Author(s):  
Michael Foley ◽  
Patrick Forber ◽  
Rory Smead ◽  
Christoph Riedl

An important way to resolve games of conflict (snowdrift, hawk–dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host–guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Sign in / Sign up

Export Citation Format

Share Document