scholarly journals Relativistic Jet Simulations of the Weibel Instability in the Slab Model to Cylindrical Jets with Helical Magnetic Fields

Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 29 ◽  
Author(s):  
Ken-Ichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jose Gómez ◽  
Ioana Duţan ◽  
Athina Meli ◽  
...  

The particle-in-cell (PIC) method was developed to investigate microscopic phenomena, and with the advances in computing power, newly developed codes have been used for several fields, such as astrophysical, magnetospheric, and solar plasmas. PIC applications have grown extensively, with large computing powers available on supercomputers such as Pleiades and Blue Waters in the US. For astrophysical plasma research, PIC methods have been utilized for several topics, such as reconnection, pulsar dynamics, non-relativistic shocks, relativistic shocks, and relativistic jets. PIC simulations of relativistic jets have been reviewed with emphasis placed on the physics involved in the simulations. This review summarizes PIC simulations, starting with the Weibel instability in slab models of jets, and then focuses on global jet evolution in helical magnetic field geometry. In particular, we address kinetic Kelvin-Helmholtz instabilities and mushroom instabilities.

Author(s):  
Ken-Ichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jose l. Gomez ◽  
Ioana Dutan ◽  
Athina Meli ◽  
...  

The Particle-In-Cell (PIC) method has been developed in order to investigate microscopic phenomena, and with the advances of computing power, newly developed codes have been used for several fields such as astrophysical, magnetospheric, and solar plasmas. PIC applications have grown extensively with large computing powers available on supercomputers such as Pleiades and Blue Waters in the US. For astrophysical plasma research PIC methods have been utilized for several topics such as reconnection, pulsar dynamics, non-relativistic shocks, relativistic shocks, relativistic jets, etc. PIC simulations of relativistic jets have been reviewed with the emphasis on the physics involved in the simulations. This review summarizes PIC simulations, starting with the Weibel instability in slab models of jets, and then focuses on global jet evolution in helical magnetic field geometry. In particular we address kinetic Kelvin-Helmholtz instabilities and mushroom instabilities.


Author(s):  
Kenichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jose L. Gomez ◽  
Ioana Dutan ◽  
Athina Meli ◽  
...  

The Particle-In-Cell (PIC) method has been developed in order to investigate microscopic phenomena, and with the advances of computing power, newly developed codes have been used for several fields such as astrophysical, magnetospheric, and solar plasmas. Its applications have grown extensively with large computing powers available such as Pleiades and Blue Water systems in the US. For astrophysical plasmas research PIC method has been utilized in several topics such as reconnection, pulsar, non-relativistic shocks, relativistic shocks, relativistic jets, etc. As one of the research topics in astrophysics, PIC simulations of relativistic jets are reviewed up to the present time with the emphasis on the physics involved in the simulations. In this review we summarize PIC simulations starting with the Weibel instability in slab models of jets and then, continuing with recent progresses on global jets with helical magnetic fields including kinetic Kelvin-Helmholtz instabilities and mushroom instabilities.


Author(s):  
Kenichi Nishikawa ◽  
Ioana Duţan ◽  
Christoph Köhn ◽  
Yosuke Mizuno

AbstractThe Particle-In-Cell (PIC) method has been developed by Oscar Buneman, Charles Birdsall, Roger W. Hockney, and John Dawson in the 1950s and, with the advances of computing power, has been further developed for several fields such as astrophysical, magnetospheric as well as solar plasmas and recently also for atmospheric and laser-plasma physics. Currently more than 15 semi-public PIC codes are available which we discuss in this review. Its applications have grown extensively with increasing computing power available on high performance computing facilities around the world. These systems allow the study of various topics of astrophysical plasmas, such as magnetic reconnection, pulsars and black hole magnetosphere, non-relativistic and relativistic shocks, relativistic jets, and laser-plasma physics. We review a plethora of astrophysical phenomena such as relativistic jets, instabilities, magnetic reconnection, pulsars, as well as PIC simulations of laser-plasma physics (until 2021) emphasizing the physics involved in the simulations. Finally, we give an outlook of the future simulations of jets associated to neutron stars, black holes and their merging and discuss the future of PIC simulations in the light of petascale and exascale computing.


2016 ◽  
Vol 12 (S324) ◽  
pp. 199-202 ◽  
Author(s):  
Ioana Duţan ◽  
Ken-Ichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jacek Niemiec ◽  
Oleh Kobzar ◽  
...  

AbstractWe study the interaction of relativistic jets with their environment, using 3-dimen- sional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton (e− − p+) and (ii) electron-positron (e±) plasmas containing helical magnetic fields. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the e− − p+ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the e± jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger systems to confirm these new findings.


2020 ◽  
Vol 493 (2) ◽  
pp. 2652-2658
Author(s):  
Kenichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jose L Gómez ◽  
Ioana Duţan ◽  
Jacek Niemiec ◽  
...  

ABSTRACT One of the key questions in the study of relativistic jets is how magnetic reconnection occurs and whether it can effectively accelerate electrons in the jet. We performed 3D particle-in-cell (PIC) simulations of a relativistic electron–proton jet of relatively large radius that carries a helical magnetic field. We focused our investigation on the interaction between the jet and the ambient plasma and explore how the helical magnetic field affects the excitation of kinetic instabilities such as the Weibel instability (WI), the kinetic Kelvin–Helmholtz instability (kKHI), and the mushroom instability (MI). In our simulations these kinetic instabilities are indeed excited, and particles are accelerated. At the linear stage we observe recollimation shocks near the centre of the jet. As the electron–proton jet evolves into the deep non-linear stage, the helical magnetic field becomes untangled due to reconnection-like phenomena, and electrons are repeatedly accelerated as they encounter magnetic-reconnection events in the turbulent magnetic field.


2022 ◽  
Vol 924 (2) ◽  
pp. 89
Author(s):  
J. L. Jiao

Abstract Ion–Weibel instability (IWI) is an important mechanism of generating a magnetic field in supernova remnants; it plays a key role in the generation of high-energy cosmic rays. Computational efficiency has been a bottleneck in numerical exploration of the large-scale evolution of IWI. Here I report a new hybrid particle-in-cell (PIC) method that can quickly simulate IWI. The method is based on a new model that describes the relation of the ion current and its magnetic field under the electron screening. The new method’s computational efficiency is nearly two orders of magnitude higher than that of the PIC method. This method is suitable for the full-scale simulation of the IWI in laser-plasma experiments and supernova remnants.


2021 ◽  
Vol 2 (2) ◽  
pp. 18-25
Author(s):  
Ananthanarasimhan J ◽  
Anand M.S. ◽  
Lakshminarayana R

This work presents simple numerical simulation algorithm to analyse the velocity evolution of high density non-magnetized glow discharge (cold) collision-less plasma using Particle-in-Cell (PIC) method. In the place of millions of physical electrons and background ions, fewer particles called super particles are used for simulation to capture the plasma properties such as particle velocity, particle energy and electrical field of the plasma system. The plasma system which is of interest in this work is weakly coupled plasma having quasi-neutrality nature. Simulation results showed symmetric velocity distribution about zero with slight left skewness, indicating static system. The order of directional velocity of individual particle seems to agree with the input electron temperature of the considered plasma system. The particle and field energy evolution were observed having fluctuations about zero which indicates that the system is equilibrating. This work marks the preliminary work to study the transport of plasma species in plasma column of gliding arc discharge.


Author(s):  
Xing Zhao ◽  
Yong Jiang ◽  
Fei Li ◽  
Wei Wang

Coarse-grained methods have been widely used in simulations of gas-solid fluidization. However, as a key parameter, the coarse-graining ratio, and its relevant scaling law is still far from reaching a consensus. In this work, a scaling law is developed based on a similarity analysis, and then it is used to scale the multi-phase particle-in-cell (MP-PIC) method, and validated in the simulation of two bubbling fluidized beds. The simulation result shows this scaled MP-PIC can reduce the errors of solids volume fraction and velocity distributions over a wide range of coarse-graining ratios. In future, we expect that a scaling law with consideration of the heterogeneity inside a parcel or numerical particle will further improve the performance of coarse-grained modeling in simulation of fluidized beds.


2018 ◽  
Vol 858 (2) ◽  
pp. 93 ◽  
Author(s):  
Masanori Iwamoto ◽  
Takanobu Amano ◽  
Masahiro Hoshino ◽  
Yosuke Matsumoto

Sign in / Sign up

Export Citation Format

Share Document