scholarly journals Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution

Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 26 ◽  
Author(s):  
Noam Soker

I argue that the high percentage of planetary nebulae (PNe) that are shaped by jets show that main sequence stars in binary systems can accrete mass at a high rate from an accretion disk and launch jets. Not only does this allow jets to shape PNe, but this also points to the importance of jets in other types of binary systems and in other processes. These processes include the grazing envelope evolution (GEE), the common envelope evolution (CEE), and the efficient conversion of kinetic energy to radiation in outflows. Additionally, the jets point to the possibility that many systems launch jets as they enter the CEE, possibly through a GEE phase. The other binary systems in which jets might play significant roles include intermediate-luminosity optical transients (ILOTs), supernova impostors (including pre-explosion outbursts), post-CEE binary systems, post-GEE binary systems, and progenitors of neutron star binary systems and black hole binary systems. One of the immediate consequences is that the outflow of these systems is highly-non-spherical, including bipolar lobes, jets, and rings.

1997 ◽  
Vol 180 ◽  
pp. 74-84 ◽  
Author(s):  
Mario Livio

High resolution images of planetary nebulae have revealed a variety of non-spherical morphologies. In addition, some planetary nebulae were found to produce highly collimated jets. It is argued that binary central stars may play a crucial role in the production of all of these morphologies. In particular, a specific mechanism is identified for the generation of “point-symmetric” nebulae. It is shown that the study of binary nuclei of planetary nebulae can provide essential information for the understanding of the common envelope phase in the evolution of binary systems.


2020 ◽  
Vol 497 (2) ◽  
pp. 2057-2065 ◽  
Author(s):  
Diego López-Cámara ◽  
Enrique Moreno Méndez ◽  
Fabio De Colle

ABSTRACT The evolution and physics of the common envelope (CE) phase are still not well understood. Jets launched from a compact object during this stage may define the evolutionary outcome of the binary system. We focus on the case in which jets are launched from a neutron star (NS) engulfed in the outer layers of a red giant (RG). We run a set of three-dimensional hydrodynamical simulations of jets with different luminosities and inclinations. The luminosity of the jet is self-regulated by the mass accretion rate and an efficiency η. Depending on the value of η the jet can break out of the previously formed bulge (‘successful jet’) and aligns against the incoming wind, in turn, it will realign in favour of the direction of the wind. The jet varies in size and orientation and may present quiescent and active epochs. The inclination of the jet and the Coriolis and centrifugal forces, only slightly affect the global evolution. As the accretion is hypercritical, and the specific angular momentum is above the critical value for the formation of a disc, we infer the formation of a disc and launching of jets. The discs’ mass and size would be ∼10−2 M⊙ and ≳1010 cm, and it may have rings with different rotation directions. In order to have a successful jet from a white dwarf, the ejection process needs to be very efficient (η ∼ 0.5). For main-sequence stars, there is not enough energy reservoir to launch a successful jet.


1989 ◽  
Vol 107 ◽  
pp. 299-310
Author(s):  
Mario Livio

AbstractWe discuss the common envelope phase in the evolution of binary systems. The problem of the efficiency of energy deposition into envelope ejection is treated in some detail. We describe the implications of common envelope evolution for the shaping of planetary nebulae with close binary nuclei and for double white dwarf systems, considered to be the progenitors of Type I supernovae.


1993 ◽  
Vol 155 ◽  
pp. 279-290 ◽  
Author(s):  
Mario Livio

Planetary nebulae with close binary nuclei are reviewed. It is shown that these systems can be used as a source of information for the physics of the common envelope phase in the evolution of binary systems. Mechanisms for the production of bipolar planetary nebulae are examined and it is concluded that presently the action of binary companions to the central stars appears to provide the most promising mechanism. Other systems (e.g. novae, supernovae) in which similar processes may be operating are discussed.


2020 ◽  
Vol 501 (1) ◽  
pp. L43-L48
Author(s):  
R F Maldonado ◽  
E Villaver ◽  
A J Mustill ◽  
M Chávez ◽  
E Bertone

ABSTRACT We investigate the origin of close-in planets and related phenomena orbiting white dwarfs (WDs), which are thought to originate from orbits more distant from the star. We use the planetary architectures of the 75 multiple-planet systems (four, five, and six planets) detected orbiting main-sequence stars to build 750 dynamically analogous templates that we evolve to the WD phase. Our exploration of parameter space, although not exhaustive, is guided and restricted by observations and we find that the higher the multiplicity of the planetary system, the more likely it is to have a dynamical instability (losing planets, orbit crossing, and scattering), that eventually will send a planet (or small object) through a close periastron passage. Indeed, the fraction of unstable four- to six-planet simulations is comparable to the 25–50${{\ \rm per\ cent}}$ fraction of WDs having atmospheric pollution. Additionally, the onset of instability in the four- to six-planet configurations peaks in the first Gyr of the WD cooling time, decreasing thereafter. Planetary multiplicity is a natural condition to explain the presence of close-in planets to WDs, without having to invoke the specific architectures of the system or their migration through the von Zeipel–Lidov–Kozai effects from binary companions or their survival through the common envelope phase.


2017 ◽  
Vol 13 (S334) ◽  
pp. 166-169
Author(s):  
P. E. Nissen ◽  
V. Silva Aguirre ◽  
J. Christensen-Dalsgaard ◽  
R. Collet ◽  
F. Grundahl ◽  
...  

AbstractHigh-precision abundances of elements have been derived from HARPS-N spectra of F and G main-sequence stars having ages determined from oscillation frequencies delivered by the Kepler mission. The tight relations between abundance ratios of refractory elements, e.g., [Mg/Fe] and [Y/Mg], and stellar age previously found for solar twin stars are confirmed. These relations provide new information on nucleosynthesis and Galactic evolution. Abundance ratios between volatile and refractory elements, e.g., [C/Fe] and [O/Fe], show on the other hand a significant scatter at a given age, which may be related to planet-star interactions. This is a potential problem for chemical tagging studies.


1988 ◽  
Vol 108 ◽  
pp. 217-218
Author(s):  
Masatoshi Kitamura ◽  
Yasuhisa Nakamura

The ordinary semi-detached close binary system consists of a main-sequence primary and subgiant (or giant) secondary component where the latter fills the Roche lobe. From a quantitative analysis of the observed ellipticity effect, Kitamura and Nakamura (1986) have deduced empirical values of the exponent of gravity-darkening for distorted main-sequence stars in detached systems and found that the empirical values of the exponent for these stars with early-type spectra are close to the unity, indicating that the subsurface layers of early-main sequence stars in close binaries are actually in radiative equilibrium. The exponent of gravity-darkening can be defined by H ∝ gα with H as the bolonetric surface brightness and g as the local gravity on the stellar surface.


1989 ◽  
Vol 8 ◽  
pp. 155-159
Author(s):  
R. E. Taam

AbstractThe current understanding of the common envelope binary phase of evolution is presented. The results obtained from the detailed computations of the hydrodynamical evolution of this phase demonstrate that the deposition of energy by the double core via frictional processes is sufficiently rapid to drive a mass outflow, primarily in the equatorial plane of the binary system. Specifically, recent calculations suggest that large amounts of mass and angular momentum can be lost from the binary system in a such a phase. Since the time scale for mass loss at the final phase of evolution is much shorter than the orbital decay time scale of the companion, the tranformation of binary systems from long orbital periods (> month) to short orbital periods (< day) is likely. The energy efficiency factor for the process is estimated to lie in the range between 0.3 and 0.6.


1983 ◽  
Vol 72 ◽  
pp. 257-262
Author(s):  
H. Ritter

ABSTRACTIt is shown that the secondary components of cataclysmic binaries with orbital periods of less than ~10 hours are indistinguishable from ordinary low-mass main-sequence stars and that, therefore, they are essentially unevolved. On the other hand, it is shown that, depending on the mass ratio of the progenitor system, the secondary of a cataclysmic binary could be significantly evolved. The fact that nevertheless most of the observed secondaries are essentially unevolved can be accounted for by assuming that the probability distribution for the initial mass ratio is not strongly peaked towards unity mass ratio.


Sign in / Sign up

Export Citation Format

Share Document