scholarly journals Adsorptive Removal of Heavy Metal Ions, Organic Dyes, and Pharmaceuticals by DNA–Chitosan Hydrogels

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 112
Author(s):  
Kayee Chan ◽  
Kohki Morikawa ◽  
Nobuyuki Shibata ◽  
Anatoly Zinchenko

DNA–chitosan (DNA–CS) hydrogel was prepared by in situ complexation between oppositely charged DNA and chitosan polyelectrolytes via electrostatic cross-linking to study its adsorption characteristics. The DNA–chitosan hydrogel matrix contains (i) cationic (NH3+) and anionic (PO4–) sites for electrostatic binding with ionic species, (ii) -OH and -NH2 groups and heteroaromatic DNA nucleobases for chelation of heavy metal ions, and (iii) DNA double-helix for recognition and binding to small organic molecules of various structures and polarities. DNA–CS hydrogels efficiently bind with Hg2+, Pb2+, Cd2+, and Cu2+ metal cations of significant environmental concern. Adsorption capacities of DNA–CS hydrogels for studied metal ions depend on hydrogel composition and pH of solution and reach ca. 50 mg/g at neutral pHs. Hydrogels with higher DNA contents show better adsorption characteristics and notably higher adsorption capacity to Hg2+ ions. Because of the co-existence of cationic and anionic macromolecules in the DNA–CS hydrogel, it demonstrates an affinity to both anionic (Congo Red) and cationic (Methylene Blue) dyes with moderate adsorption capacities of 12.6 mg/g and 29.0 mg/g, respectively. DNA–CS hydrogel can also be used for adsorptive removal of pharmaceuticals on conditions that their molecules are sufficiently hydrophobic and have ionogenic group(s). Facile preparation and multitarget adsorption characteristics of DNA–CS hydrogel coupled with sustainable and environmentally friendly characteristics render this system promising for environmental cleaning applications.

2014 ◽  
Vol 1056 ◽  
pp. 16-19
Author(s):  
Shu Li Ding ◽  
Dan Dan Hou ◽  
Bo Hui Xu ◽  
Yu Zhuang Sun

The Bentonite from Yongnian is Ca-Bentonite, Montmorillonite Content 52%, Colloidal Value 57ml/15g, Eca2+/CEC 53.60%. the Adsorption Characteristics of Pb2+, Cu2+ and Cr3+ onto Bentonite under Conditions of Constant Temperature and Ph have been Studied. the Results Show that the Adsorption Capacities of Heavy Metal Ions onto Bentonite from Yongnian Follow the Order of Pb2+> Cu2+> Cr3+. it is Found that the Adsorption Process of Bentonite Accords with the Langmuir Isotherm Model. the Maximum Adsorption of 3 Kinds of Metal Ions onto Bentonite is in Order of Cr3+>Cu2+>Pb2+.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 599 ◽  
Author(s):  
Nerea De Acha ◽  
César Elosúa ◽  
Jesús Corres ◽  
Francisco Arregui

Due to the risks that water contamination implies for human health and environmental protection, monitoring the quality of water is a major concern of the present era. Therefore, in recent years several efforts have been dedicated to the development of fast, sensitive, and selective sensors for the detection of heavy metal ions. In particular, fluorescent sensors have gained in popularity due to their interesting features, such as high specificity, sensitivity, and reversibility. Thus, this review is devoted to the recent advances in fluorescent sensors for the monitoring of these contaminants, and special focus is placed on those devices based on fluorescent aptasensors, quantum dots, and organic dyes.


2020 ◽  
Vol 99 ◽  
pp. 106072 ◽  
Author(s):  
Lihua Liu ◽  
Siyan Liu ◽  
Hongliang Peng ◽  
Zhengchi Yang ◽  
Lu Zhao ◽  
...  

2011 ◽  
Vol 308-310 ◽  
pp. 178-181
Author(s):  
Xin Liang Liu ◽  
Li Jun Wang ◽  
Yong Li Chen ◽  
Nan Chen ◽  
Shuang Fei Wang

The bagasse fibers were activated by alkalize and etherified. 1,2-ethanediamine and carbon disulfide were used to modify the etherify fiber to get the chelate-fiber contained sulfur and nitrogen. The FTIR was used to characterize the xanthated aminating-fiber (XAF). The mechanism of sorption properties for heavy metal ions were studied. As the results shown, the optimal process to prepare the XAF was that the reaction time, concentration of NaOH and dosage of CS2 was 60min, 12% and 2mL, respectively. The chelate-fiber containing sulfur and nitrogen possessed high adsorption capacities for Cu(II) and the mechanism of sorption fitted the pseudo-second-order model well.


TANSO ◽  
2011 ◽  
Vol 2011 (247) ◽  
pp. 62-69 ◽  
Author(s):  
Motoi Machida ◽  
Yoshimasa Amano ◽  
Masami Aikawa

Sign in / Sign up

Export Citation Format

Share Document