scholarly journals VvSWEET10 Mediates Sugar Accumulation in Grapes

Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 255 ◽  
Author(s):  
Zhan Zhang ◽  
Luming Zou ◽  
Chong Ren ◽  
Fengrui Ren ◽  
Yi Wang ◽  
...  

Sugar accumulation is a critical event during grape berry ripening that determines the grape market values. Berry cells are highly dependent on sugar transporters to mediate cross-membrane transport. However, the role of sugar transporters in improving sugar accumulation in berries is not well established in grapes. Herein we report that a Sugars Will Eventually be Exported Transporter (SWEET), that is, VvSWEET10, was strongly expressed at the onset of ripening (véraison) and can improve grape sugar content. VvSWEET10 encodes a plasma membrane-localized transporter, and the heterologous expression of VvSWEET10 indicates that VvSWEET10 is a hexose-affinity transporter and has a broad spectrum of sugar transport functions. VvSWEET10 overexpression in grapevine calli and tomatoes increased the glucose, fructose, and total sugar levels significantly. The RNA sequencing results of grapevine transgenic calli showed that many sugar transporter genes and invertase genes were upregulated and suggest that VvSWEET10 may mediate sugar accumulation. These findings elucidated the role of VvSWEET10 in sugar accumulation and will be beneficial for the improvement of grape berry quality in the future.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xinsheng Zhang ◽  
Chaoyang Feng ◽  
Manning Wang ◽  
Tianlai Li ◽  
Xin Liu ◽  
...  

AbstractSugars, especially glucose and fructose, contribute to the taste and quality of tomato fruits. These compounds are translocated from the leaves to the fruits and then unloaded into the fruits by various sugar transporters at the plasma membrane. SWEETs, are sugar transporters that regulate sugar efflux independently of energy or pH. To date, the role of SWEETs in tomato has received very little attention. In this study, we performed functional analysis of SlSWEET7a and SlSWEET14 to gain insight into the regulation of sugar transport and storage in tomato fruits. SlSWEET7a and SlSWEET14 were mainly expressed in peduncles, vascular bundles, and seeds. Both SlSWEET7a and SlSWEET14 are plasma membrane-localized proteins that transport fructose, glucose, and sucrose. Apart from the resulting increase in mature fruit sugar content, silencing SlSWEET7a or SlSWEET14 resulted in taller plants and larger fruits (in SlSWEET7a-silenced lines). We also found that invertase activity and gene expression of some SlSWEET members increased, which was consistent with the increased availability of sucrose and hexose in the fruits. Overall, our results demonstrate that suppressing SlSWEET7a and SlSWEET14 could be a potential strategy for enhancing the sugar content of tomato fruits.


2020 ◽  
Vol 21 (10) ◽  
pp. 3524
Author(s):  
Baiyi Lu ◽  
Suying Wen ◽  
Peilu Zhu ◽  
Haishun Cao ◽  
Yixuan Zhou ◽  
...  

Sugar allocation is based on the source-to-sink and intracellular transport between different organelles, and sugar transporters are usually involved in these processes. Tonoplast sugar transporters (TST) are responsible for transporting sugar into vacuoles; however, the role of TSTs in root growth and the response to abiotic stress is poorly studied. Here, RNA analysis and promoter-β-glucuronidase staining revealed that a melon TST1 gene (CmTST1) is highly expressed in the roots. The sugar feeding experiment results showed that the expression of CmTST1 in the roots was induced by a relatively high level of sucrose (6%), glucose (3%), and fructose (3%). The ectopic overexpression of CmTST1 in Arabidopsis improved the root and shoot growth of seedlings under high exogenous sugar stress. Furthermore, the ectopic expression of CmTST1 promoted the expression of plasma membrane-located sugar transporters. We proposed that CmTST1 plays a key role in importing sugar transport into the vacuoles of roots in response to metabolic demands to maintain cytosolic sugar homeostasis.


2020 ◽  
Vol 21 (3) ◽  
pp. 1112 ◽  
Author(s):  
Peng ◽  
Wang ◽  
Ogutu ◽  
Liu ◽  
Liu ◽  
...  

Sugar content is related to fruit sweetness, and the complex mechanisms underlying fruit sugar accumulation still remain elusive. Here, we report a peach PpTST1 gene encoding tonoplast sugar transporter that is located in the quantitative trait loci (QTL) interval on Chr5 controlling fruit sucrose content. One derived Cleaved Amplified Polymorphic Sequence (dCAPS) marker was developed based on a nonsynonymous G/T variant in the third exon of PpTST1. Genotyping of peach cultivars with the dCAPS marker revealed a significant difference in fruit sugar content among genotypes. PpTST1 is located in the tonoplast, and substitution of glutamine by histidine caused by the G/T variation has no impact on subcellular location. The expression profile of PpTST1 exhibited a consistency with the sugar accumulation pattern, and its transient silencing significantly inhibited sugar accumulation in peach fruits. All of these results demonstrated the role of PpTST1 in regulating sugar accumulation in peach fruit. In addition, cis-elements for binding of MYB and WRKY transcript factors were found in the promoter sequence of PpTST1, suggesting a gene regulatory network of fruit sugar accumulation. Our results are not only helpful for understanding the mechanisms underlying fruit sugar accumulation, but will also be useful for the genetic improvement of fruit sweetness in peach breeding programs.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 136 ◽  
Author(s):  
Nguyen ◽  
Dang ◽  
Nguyen ◽  
Tran ◽  
Giang ◽  
...  

The use of plant growth regulators is one effective solution to improve sugarcane yields and sugar content in several countries. In this study, we examined the role of gibberellin acid (GA3) and glyphosate (Gly) plant growth regulators to determine the appropriate concentration of GA3 and Gly to increase the yield of sugarcane and sugar accumulation, respectively. The statistical results showed that GA3 was sprayed at 150 ppm to increment the actual yield by 19.94%; sucrose accumulation increased by 2.21%. With Gly treatment, although the yield decreased by 3.17%, sucrose accumulation increased by 11.27% compared to control trials. In this study, the combined concentration of 150 ppm of both GA3 and Gly gave the best results, for which sucrose accumulation increased from 2.21% to 10.74% and from 19.94% to 20.97% for actual yield. The results led to increased net income compared to the control. To address concerns about residues of plant growth regulators, residues of GA3 and Gly were evaluated after the sugarcane harvest using the HPLC and UV-vis methods, respectively. The analyzed results showed that their residues were lower than what is permitted in several countries. This showed the applicability of the study, on a large scale, to increase sucrose accumulation, productivity of sugarcane, and profit for farmers.


OENO One ◽  
2004 ◽  
Vol 38 (1) ◽  
pp. 54
Author(s):  
Alain Carbonneau

<p style="text-align: justify;">The agrometeorological model of potential grape berry sugar content joined to the carbon balance model of the triptych « Exposed Leaf Area – Dry Matter Production or Yield – Vigour », with the consideration of moderate water limitation standards and the general experience of berry maturity, lead to the proposal of a practical model for evaluating the potential grape berry quality useful for training vineyards.</p>


2015 ◽  
Author(s):  
Amnon Lichter ◽  
David Obenland ◽  
Nirit Bernstein ◽  
Jennifer Hashim ◽  
Joseph Smilanick

Objectives: The objectives of the proposal were to study how potassium (K) enters the berry and in what tissues it accumulates, to determine what is the sensitive phenological stage that is responsive to K, to study the influence of K on sugar translocation, to determine if K has effects on expression of genes in source and sink organs and to study applied aspects of the responses to K at the vineyard level. During the research it was realized that K acts externally so a major part of the original objectives had to be deserted and new ones, i.e. the role of K in enhancing water loss from the berry, had to be developed. In addition, the US partners developed practical objectives of understanding the interaction of K application and water deficit as well as application of growth regulators. Background: In our preliminary data we showed that application of K at mid-ripening enhanced sugar accumulation of table grapes. This finding is of major implications to both early and late harvested grapes and it was essential to understand the mode of action of this treatment. Our major hypothesis was that K enters the berry and by that increases sugar translocation into the berry. In addition it was important to cover practical issues of the application which may influence its efficacy and its reproducibility. Conclusions: The major conclusion from the research was that our initial hypothesis was wrong. Mineral analysis of pulp tissue indicated that upon application of K there was a significant increase in most of the major minerals. Subsequently, we developed a new hypothesis that K acts by increasing the water loss from the berry. In vitro studies of K-treated berries corroborated this hypothesis showing greater weight-loss of treated berries. This was not necessarily expressed in the vineyard as in some experiments berry weight remained unchanged, suggesting that the vine compensated for the enhanced water loss. Importantly, we also discovered that the efficacy of different K salts was strongly correlated to the pH of the salt solution: basic K salts had better efficacy than neutral or acidic salts and modifying the pH of the same salt changed its efficacy. It was therefore suggested that K changes the properties of the cuticle making it more susceptible to water loss. Of the practical aspects it was found that application of K to the clusters was sufficient to trigger its affect and that dual application of K had a stronger effect than single application. With regard to timing, it was realized that application of K after veraison was affective and the berries responded also when ripe. While the effect of K application was significant at harvest, it was mostly insignificant one week after application, suggesting that prolonged exposure to K was required. Implications: The scientific implications of the study are that the external mineral composition of the berry may have a significant role in sugar accumulation and that water loss may have an important role in sugar accumulation in grapes. It is not entirely clear how K modulates the cuticle but according to the literature its incorporation into the cuticle may increase its polarity and facilitate generation of "water bridges" between the flesh and the environment. The practical implications of this study are very significant because realizing the mode of action of K can facilitate a much more efficient application strategy. For example, it can be understood that sprays must be directed to the clusters rather than the whole vines and it can be predicted that the length of exposure is important. Also, by increasing the pH of simple K salts, the efficacy of the treatment can be enhanced, saving in the costs of the treatment. Finally, the ability of grape growers to apply K in a safe and knowledgeable way can have significant impact on the length of the season of early grape cultivars and improve the flavor of high grape yields which may otherwise have compromised sugar levels.


1963 ◽  
Vol 16 (4) ◽  
pp. 737 ◽  
Author(s):  
TA Bull ◽  
KT Glasziou

Sugar levels in the various species of the Saccharum complex suggest an evolutionary increase in sugar content. Under suitable ecological conditions, survival through sucker growth may be dependent on rapid mobilization of stored carbohydrate. Selection pressure for sucrose storage would then oocur if sucrose was more readily remobilized than other storage carbohydrates. It is suggested that this ecological situation occurred in New Guinea, and that natural and not human selection lead to the evolution of S. oJJicinarum.


2021 ◽  
Vol 22 (2) ◽  
pp. 745
Author(s):  
Federica De Marco ◽  
Brigitte Batailler ◽  
Michael R. Thorpe ◽  
Frédérique Razan ◽  
Rozenn Le Hir ◽  
...  

Phytoplasmas inhabit phloem sieve elements and cause abnormal growth and altered sugar partitioning. However, how they interact with phloem functions is not clearly known. The phloem responses were investigated in tomatoes infected by “Candidatus Phytoplasma solani” at the beginning of the symptomatic stage, the first symptoms appearing in the newly emerged leaf at the stem apex. Antisense lines impaired in the phloem sucrose transporters SUT1 and SUT2 were included. In symptomatic sink leaves, leaf curling was associated with higher starch accumulation and the expression of defense genes. The analysis of leaf midribs of symptomatic leaves indicated that transcript levels for genes acting in the glycolysis and peroxisome metabolism differed from these in noninfected plants. The phytoplasma also multiplied in the three lower source leaves, even if it was not associated with the symptoms. In these leaves, the rate of phloem sucrose exudation was lower for infected plants. Metabolite profiling of phloem sap-enriched exudates revealed that glycolate and aspartate levels were affected by the infection. Their levels were also affected in the noninfected SUT1- and SUT2-antisense lines. The findings suggest the role of sugar transporters in the responses to infection and describe the consequences of impaired sugar transport on the primary metabolism.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chong Ren ◽  
Yanfei Liu ◽  
Yuchen Guo ◽  
Wei Duan ◽  
Peige Fan ◽  
...  

AbstractThe efficacy of the CRISPR/Cas9 system in grapevine (Vitis vinifera L.) has been documented, but the optimization of this system, as well as CRISPR/Cas9-mediated multiplex genome editing, has not been explored in this species. Herein, we identified four VvU3 and VvU6 promoters and two ubiquitin (UBQ) promoters in grapevine and demonstrated that the use of the identified VvU3/U6 and UBQ2 promoters could significantly increase the editing efficiency in grape by improving the expression of sgRNA and Cas9, respectively. Furthermore, we conducted multiplex genome editing using the optimized CRISPR/Cas9 vector that contained the conventional multiple sgRNA expression cassettes or the polycistronic tRNA-sgRNA cassette (PTG) by targeting the sugar-related tonoplastic monosaccharide transporter (TMT) family members TMT1 and TMT2, and the overall editing efficiencies were higher than 10%. The simultaneous editing of TMT1 and TMT2 resulted in reduced sugar levels, which indicated the role of these two genes in sugar accumulation in grapes. Moreover, the activities of the VvU3, VvU6, and UBQ2 promoters in tobacco genome editing were demonstrated by editing the phytoene desaturase (PDS) gene in Nicotiana benthamiana leaves. Our study provides materials for the optimization of the CRISPR/Cas9 system. To our knowledge, our simultaneous editing of the grape TMT family genes TMT1 and TMT2 constitutes the first example of multiplex genome editing in grape. The multiplex editing systems described in this manuscript expand the toolbox of grape genome editing, which would facilitate basic research and molecular breeding in grapevine.


OENO One ◽  
2019 ◽  
Vol 53 (2) ◽  
Author(s):  
Predrag Nenad Božović ◽  
Suzy Rogiers ◽  
Alain Deloire

Aim: The transport of sugars into grape berry mesocarp cells across the plasma and vacuolar membranes after onset of ripening is a complex process. Elements of the sugar transport mechanism may be assessed by exposing the mesocarp cells and investigating sugar movement across the membranes. The purpose of this study was to gain insights into the nature of the transport mechanism by creating conditions conducive to hexose efflux from the peeled berry.Methods and results: The experimental technique employed was a derivate of the ‘berry-cup’ technique. The skin of ripening cv. Shiraz berries was peeled in situ and, after an initial wash, hexose efflux into a collection medium (MES buffer) was monitored. Additionally, during the period of intensive sugar accumulation (one week after veraison) and two weeks later, hexose efflux was assessed following three modifications: (i) using berries excised from the vine, (ii) using MES buffer (2-(N-morpholino)ethanesulfonic acid, pH 5.5) containing PCMBS (p-chloromercuribenzenesulfonic acid, 1mM), and (iii) using cold (10°C) or warm (40°C) MES buffer. Hexose quantities collected into the buffer were dependent on ripening stage and buffer temperature, but they were not dependent on an intact berry-to-cluster connection. The inhibitory effect of PCMBS was observed early in ripening, but not two weeks later.Conclusions: These results lead us to the conclusion that the origin of the collected hexoses was vacuolar as opposed to vascular, and that the hexose efflux mechanism is differently sensitive to PCMBS at the two stages of ripening.Significance and impact of the study: This simple technique was effective at providing insights into hexose transport within the grape berry at the cellular level.


Sign in / Sign up

Export Citation Format

Share Document