scholarly journals Altered Expression of DAAM1 and PREP Induced by Cadmium Toxicity Is Counteracted by Melatonin in the Rat Testis

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1016
Author(s):  
Massimo Venditti ◽  
Mariem Ben Rhouma ◽  
Maria Zelinda Romano ◽  
Imed Messaoudi ◽  
Russel J. Reiter ◽  
...  

Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3β-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells’ differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiandong Zhu ◽  
Feixia Guo ◽  
Hengjie Tang ◽  
Chongchu Huang ◽  
Gangyin Xie ◽  
...  

Testicular structural and functional impairment is a serious complication in male diabetes mellitus (DM) patients that leads to impaired fertility in adulthood. In contrast to other endocrine therapies, islet transplantation (IT) can effectively prevent and even reverse diabetic nephropathy and myocardial damage. However, whether IT can alleviate diabetes-induced testicular injury remains unclear. In this study, we sought to investigate the effect of IT on diabetes-induced testicular damage. A diabetic rat model was established by streptozotocin injection. DM, IT, and insulin treatment (INS) groups were compared after 4 weeks of respective treatment. We confirmed that IT could effectively attenuate diabetes-induced testicular damage and recover sperm counts more extensively compared with INS in diabetic rats. In addition, significantly higher levels of superoxide dismutase (SOD) activity and lower contents of malondialdehyde (MDA) were detected in the testes of the IT group versus diabetic rats. Mechanism studies revealed that IT significantly activates the expression of Nrf-2, HO-1, and NQO-1 and inhibits upregulation of the NF-κB expression in response to DM, while INS only exhibit slight impact on the protein expression. Therefore, we speculate that IT may prevent the progression of testicular damage by downregulating oxidative stress and inhibiting inflammation via Nrf-2/HO-1 and NF-κB pathways.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wenliang Zha ◽  
Yuting Bai ◽  
Ling Xu ◽  
Yuning Liu ◽  
Zhen Yang ◽  
...  

Oxidative damage, inflammation, and apoptosis are the primary features of diabetic testicular damage. Curcumin protects against diabetic testicular injury, but the underlying mechanisms remain obscure. This study examined the effect of curcumin on type 2 diabetes mellitus- (T2DM-) induced testicular injury, oxidative stress, and apoptotic changes. T2DM rats were intraperitoneally injected with 40 mg/kg STZ after being fed a high-fat diet for 8 weeks. One week after STZ injection, 100 or 200 mg/kg curcumin was administered orally to the diabetic rats for 16 weeks. Histological changes in the testes were determined by HE staining. Serum testosterone was measured. Markers of superoxide levels, such as SOD activity and MDA content, and markers of cell death, including the expression of Bax, Bcl-2, and MAPK family members, were measured by molecular biology or immunohistochemical techniques. Degeneration and disruption of seminiferous tubule structure were observed in diabetic rats. Serum testosterone levels were markedly lower in diabetic rats than in control rats. Moreover, testicular apoptosis and Bax expression were much higher in diabetic rats than in control rats. Superoxide generation, the NADP+/NADPH ratio, and NADPH oxidase subunit expression, including expression of the gp91phox, p47phox, and p67phox subunits, increased, while antioxidant enzyme levels decreased in diabetic rats. Furthermore, the MAPK signaling pathway was activated in diabetic rats. Curcumin partially prevented diabetes-induced microstructural abnormalities and significantly increased serum testosterone levels compared to untreated T2DM rats. Additionally, curcumin reduced testicular apoptosis by regulating apoptotic proteins and markedly inhibited oxidative stress levels by downregulating MDA expression, decreasing NADPH activity, and restoring antioxidant enzymes. Remarkably, curcumin treatment also suppressed MAPK activation. Thus, curcumin may have therapeutic value in the treatment of diabetes-induced testicular injury due to its prevention of testicular apoptosis and attenuation of oxidative stress.


2018 ◽  
Vol 48 (2) ◽  
pp. 583-592 ◽  
Author(s):  
Jianjun Xu ◽  
Cai Lin ◽  
Tingting Wang ◽  
Peng Zhang ◽  
Zhengjun Liu ◽  
...  

Background/Aims: Ergosterol (ER) is the primary sterol found in fungi and is named after the ergot fungus. A variety of pharmacological activities have been reported for ER, including antioxidative, anti-proliferative, and anti-inflammatory effects, although its role in sepsis remains unclear. Methods: The protective effect of ER on lipopolysaccharide (LPS)-induced sepsis myocardial injury was evaluated both in vivo and in vitro. Rats were pretreated with ER and then with LPS. Histopathology of heart tissues was first performed. Subsequently, the levels of superoxide dismutase (SOD), malondialdehyde (MDA), creatine kinase MB fraction (CK-MB), and lactate dehydrogenase (LDH) in serum and heart tissues were assessed by enzyme-linked immunosorbent assay kits. Western blotting was further used to evaluate the expression of antioxidant proteins (HO-1 and cytochrome c) and apoptosis associated proteins (Bcl-2, Bax, cleaved-caspase-3, cleaved-caspase-9, and cleaved-PARP). In addition, the effects of ER on oxidative stress biomarkers and apoptosis proteins were also detected in LPS-treated H9C2 cells. Moreover, small interfering Nrf2 RNA was transfected to H9C2 cells to study the role of Nrf2 signaling in connection with the protective effects of ER. Results: Pretreatment with ER ameliorated the histopathological changes in heart tissue induced by LPS injection, increased SOD activity, and reduced MDA content, and CK-MB and LDH levels. Furthermore, ER restored the expression of Nrf-2 and HO-1 in rat hearts, attenuating apoptotic damage via up-regulation of Bcl-2 in combination with the inhibition of Bax, cytochrome c, cleaved-caspase-3 and 9, and PARP, as revealed by western blot. When Nrf2 was blocked by siRNA, the effects of ER on SOD and MDA activity, as well as the expression of the antioxidant proteins and apoptosis-associated proteins were abolished. Conclusions: We demonstrated that ER has a cardioprotective effect in LPS-induced sepsis model through modulation of the antioxidant activity and anti-apoptosis effects and this process might be regulated by Nrf2 signaling.


2008 ◽  
Vol 81 (3) ◽  
pp. 279-284 ◽  
Author(s):  
Murat Cakan ◽  
Demet Yilmazer ◽  
Turkay Cakan ◽  
Tolga R. Aydos ◽  
Elmas Ogus ◽  
...  

Author(s):  
Elena Rodríguez-Sánchez ◽  
José Alberto Navarro-García ◽  
Jennifer Aceves-Ripoll ◽  
Laura González-Lafuente ◽  
Nerea Corbacho-Alonso ◽  
...  

Abstract Aging and chronic kidney disease (CKD) are important interrelated cardiovascular risk (CVR) factors linked to oxidative stress, but this relationship has not been well studied in older adults. We assessed the global oxidative status in an older population with normal to severely impaired renal function. We determined the oxidative status of 93 older adults (mean age 85 years) using multimarker scores. OxyScore was computed as index of systemic oxidative damage by analyzing carbonyl groups, oxidized low-density lipoprotein, 8-hydroxy-2′-deoxyguanosine, and xanthine oxidase activity. AntioxyScore was computed as index of antioxidant defense by analyzing catalase and superoxide dismutase (SOD) activity and total antioxidant capacity. OxyScore and AntioxyScore were higher in subjects with estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 than in peers with eGFR >60 mL/min/1.73 m2, with protein carbonyls, catalase, and SOD activity as major drivers. Older adults with a recent cardiovascular event had similar OxyScore and AntioxyScore as peers with eGFR >60 mL/min/1.73 m2. Multivariate linear regression analysis revealed that both indices were associated with decreased eGFR independently of traditional CVR factors. Interestingly, AntioxyScore was also associated with diuretic treatment, and a more pronounced increase was seen in subjects receiving combination therapy. The associations of AntioxyScore with diuretic treatment and eGFR were mutually independent. In conclusion, eGFR is the major contributor to the imbalance in oxidative stress in this older population. Given the association between oxidative stress, CKD, and CVR, the inclusion of renal function parameters in CVR estimators for older populations, such as the SCORE-OP, might improve their modest performance.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


2021 ◽  
Vol 209 ◽  
pp. 111851
Author(s):  
Anelia G. Dobrikova ◽  
Emilia L. Apostolova ◽  
Anetta Hanć ◽  
Ekaterina Yotsova ◽  
Preslava Borisova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document